Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biostatistics ; 23(3): 825-843, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-33527998

RESUMEN

Functional magnetic resonance imaging (fMRI) data have become increasingly available and are useful for describing functional connectivity (FC), the relatedness of neuronal activity in regions of the brain. This FC of the brain provides insight into certain neurodegenerative diseases and psychiatric disorders, and thus is of clinical importance. To help inform physicians regarding patient diagnoses, unsupervised clustering of subjects based on FC is desired, allowing the data to inform us of groupings of patients based on shared features of connectivity. Since heterogeneity in FC is present even between patients within the same group, it is important to allow subject-level differences in connectivity, while still pooling information across patients within each group to describe group-level FC. To this end, we propose a random covariance clustering model (RCCM) to concurrently cluster subjects based on their FC networks, estimate the unique FC networks of each subject, and to infer shared network features. Although current methods exist for estimating FC or clustering subjects using fMRI data, our novel contribution is to cluster or group subjects based on similar FC of the brain while simultaneously providing group- and subject-level FC network estimates. The competitive performance of RCCM relative to other methods is demonstrated through simulations in various settings, achieving both improved clustering of subjects and estimation of FC networks. Utility of the proposed method is demonstrated with application to a resting-state fMRI data set collected on 43 healthy controls and 61 participants diagnosed with schizophrenia.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Análisis por Conglomerados , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen
2.
Biometrics ; 77(4): 1385-1396, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32865813

RESUMEN

We consider a novel problem, bi-level graphical modeling, in which multiple individual graphical models can be considered as variants of a common group-level graphical model and inference of both the group- and individual-level graphical models is of interest. Such a problem arises from many applications, including multi-subject neuro-imaging and genomics data analysis. We propose a novel and efficient statistical method, the random covariance model, to learn the group- and individual-level graphical models simultaneously. The proposed method can be nicely interpreted as a random covariance model that mimics the random effects model for mean structures in linear regression. It accounts for similarity between individual graphical models, identifies group-level connections that are shared by individuals, and simultaneously infers multiple individual-level networks. Compared to existing multiple graphical modeling methods that only focus on individual-level graphical modeling, our model learns the group-level structure underlying the multiple individual graphical models and enjoys computational efficiency that is particularly attractive for practical use. We further define a measure of degrees-of-freedom for the complexity of the model useful for model selection. We demonstrate the asymptotic properties of our method and show its finite-sample performance through simulation studies. Finally, we apply the method to our motivating clinical data, a multi-subject resting-state functional magnetic resonance imaging dataset collected from participants diagnosed with schizophrenia, identifying both individual- and group-level graphical models of functional connectivity.


Asunto(s)
Conectoma , Esquizofrenia , Encéfalo/diagnóstico por imagen , Simulación por Computador , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen
3.
Chem Res Toxicol ; 32(11): 2214-2226, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31589032

RESUMEN

Metabolic activation of many carcinogens leads to formation of reactive intermediates that form DNA adducts. These adducts are cytotoxic when they interfere with cell division. They can also cause mutations by miscoding during DNA replication. Therefore, an individual's risk of developing cancer will depend on the balance between these processes as well as their ability to repair the DNA damage. Our hypothesis is that variations of genes participating in DNA damage repair and response pathways play significant roles in an individual's risk of developing tobacco-related cancers. To test this hypothesis, 61 human B-lymphocyte cell lines from the International HapMap project were phenotyped for their sensitivity to the cytotoxic and genotoxic properties of a model methylating agent, N-nitroso-N-methylurethane (NMUr). Cell viability was measured using a luciferase-based assay. Repair of the mutagenic and toxic DNA adduct, O6-methylguanine (O6-mG), was monitored by LC-MS/MS analysis. Genotoxic potential of NMUr was assessed employing a flow-cytometry based in vitro mutagenesis assay in the phosphatidylinositol-glycan biosynthesis class-A (PIG-A) gene. A wide distribution of responses to NMUr was observed with no correlation to gender or ethnicity. While the rate of O6-mG repair partially influenced the toxicity of NMUr, it did not appear to be the major factor affecting individual susceptibility to the mutagenic effects of NMUr. Genome-wide analysis identified several novel single nucleotide polymorphisms to be explored in future functional validation studies for a number of the toxicological end points.


Asunto(s)
Alquilantes/toxicidad , Linfocitos B/efectos de los fármacos , Carcinógenos/toxicidad , Nitrosometiluretano/toxicidad , Linfocitos B/metabolismo , Línea Celular , Daño del ADN , Metilación de ADN , Reparación del ADN , Humanos , Mutagénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA