Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 13(1): 239, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384907

RESUMEN

BACKGROUND: Millions of pyrethroid LLINs have been distributed in Mali during the past 20 years which, along with agricultural use, has increased the selection pressure on malaria vector populations. This study investigated pyrethroid resistance intensity and susceptible status of malaria vectors to alternative insecticides to guide choice of insecticides for LLINs and IRS for effective control of malaria vectors. METHODS: For 3 years between 2016 and 2018, susceptibility testing was conducted annually in 14-16 sites covering southern and central Mali. Anopheles gambiae (s.l.) were collected from larval sites and adult mosquitoes exposed in WHO tube tests to diagnostic doses of bendiocarb (0.1%) and pirimiphos-methyl (0.25%). Resistance intensity tests were conducted using CDC bottle bioassays (2016-2017) and WHO tube tests (2018) at 1×, 2×, 5×, and 10× the diagnostic concentration of permethrin, deltamethrin and alpha-cypermethrin. WHO tube tests were conducted with pre-exposure to the synergist PBO followed by permethrin or deltamethrin. Chlorfenapyr was tested in CDC bottle bioassays at 100 µg active ingredient per bottle and clothianidin at 2% in WHO tube tests. PCR was performed to identify species within the An. gambiae complex. RESULTS: In all sites An. gambiae (s.l.) showed high intensity resistance to permethrin and deltamethrin in CDC bottle bioassay tests in 2016 and 2017. In 2018, the WHO intensity tests resulted in survivors at all sites for permethrin, deltamethrin and alpha-cypermethrin when tested at 10× the diagnostic dose. Across all sites mean mortality was 33.7% with permethrin (0.75%) compared with 71.8% when pre-exposed to PBO (4%), representing a 2.13-fold increase in mortality. A similar trend was recorded for deltamethrin. There was susceptibility to pirimiphos-methyl, chlorfenapyr and clothianidin in all surveyed sites, including current IRS sites in Mopti Region. An. coluzzii was the primary species in 4 of 6 regions. CONCLUSIONS: Widespread high intensity pyrethroid resistance was recorded during 2016-2018 and is likely to compromise the effectiveness of pyrethroid LLINs in Mali. PBO or chlorfenapyr LLINs should provide improved control of An. gambiae (s.l.). Clothianidin and pirimiphos-methyl insecticides are currently being used for IRS as part of a rotation strategy based on susceptibility being confirmed in this study.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Insecticidas , Butóxido de Piperonilo , Piretrinas , Animales , Bioensayo , Femenino , Mosquiteros Tratados con Insecticida , Larva , Malaria/prevención & control , Malí , Control de Mosquitos , Mosquitos Vectores
2.
Malar J ; 16(1): 477, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162120

RESUMEN

BACKGROUND: There is growing concern that malaria vector resistance to pyrethroid insecticides may reduce the effectiveness of long-lasting insecticidal nets (LLINs). Combination LLINs are designed to control susceptible and pyrethroid-resistant mosquito populations through a mixture of pyrethroid with piperonyl butoxide (PBO) synergist. A cluster randomized trial with entomology outcome measures was conducted in Mali to determine the added benefit over mono-treated pyrethroid predecessors. Four LLIN treatments; permethrin + PBO, permethrin, deltamethrin + PBO, and deltamethrin, were randomly allocated to four villages each (16 villages total) and distributed to cover every sleeping place. Entomological monitoring of indoor Anopheles resting densities, host preference, vector longevity, and sporozoite rates were monitored every 2 months over 2 years in 2014 and 2015. RESULTS: Bottle bioassays confirmed permethrin and deltamethrin resistance in Anopheles gambiae sensu lato (s.l.), (the predominant species throughout the study) with pre-exposure to PBO indicating partial involvement of oxidases. Between 2014 and 2015 the mean indoor resting density was greater in the deltamethrin + PBO LLIN arm than the deltamethrin LLIN arm at 3.05 (95% CI 3.00-3.10) An. gambiae s.l. per room per day compared with 1.9 (95% CI 1.87-1.97). There was no significant difference in sporozoite rate at 3.97% (95% CI 2.91-5.02) for the deltamethrin LLIN arm and 3.04% (95% CI 2.21-3.87) for deltamethrin + PBO LLIN arm (P = 0.17). However, when analysed by season there was some evidence that the sporozoite rate was lower in the deltamethrin + PBO LLIN arm than deltamethrin LLIN arm during the rainy/high malaria transmission seasons at 1.95% (95% CI 1.18-2.72) and 3.70% (95% CI 2.56-4.84) respectively (P = 0.01). CONCLUSIONS: While there was some evidence that An. gambiae s.l. sporozoite rates were lower in villages with deltamethrin + PBO LLINs during the high malaria transmission seasons of 2014-2015, there was no reduction in parity rates or indoor resting densities. There was also no evidence that permethrin + PBO LLINs provided any improved control when compared with permethrin LLINs. Combination nets may have a greater impact in areas where mixed function oxidases play a more important role in pyrethroid resistance.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Control de Mosquitos , Mosquitos Vectores , Animales , Anopheles/parasitología , Anopheles/fisiología , Análisis por Conglomerados , Sinergismo Farmacológico , Longevidad , Malí , Mosquitos Vectores/parasitología , Mosquitos Vectores/fisiología , Nitrilos , Permetrina , Butóxido de Piperonilo , Piretrinas , Población Rural
3.
Malar J ; 14: 327, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26296644

RESUMEN

BACKGROUND: The impact of indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs), key components of the national malaria control strategy of Mali, is threatened by vector insecticide resistance. The objective of this study was to assess the level of insecticide resistance in Anopheles gambiae sensu lato populations from Mali against four classes of insecticide recommended for IRS: organochlorines (OCs), pyrethroids (PYs), carbamates (CAs) and organophosphates (OPs). Characterization of resistance was done in 13 sites across southern Mali and assessed presence and distribution of physiological mechanisms that included target-site modifications: knockdown resistance (kdr) and altered acetycholinesterase (AChE), and/or metabolic mechanisms: elevated esterases, glutathione S-transferases (GSTs), and monooxygenases. METHODS: The World Health Organization (WHO) tube test was used to determine phenotypic resistance of An. gambiae s.l. to: dichlorodiphenyltrichloroethane (DDT) (OC), deltamethrin (PY), lambda-cyhalothrin (PY), bendiocarb (CA), and fenitrothion (OP). Identification of sibling species and presence of the ace-1 (R) and Leu-Phe kdr, resistance-associated mutations, were determined using polymerase chain reaction (PCR) technology. Biochemical assays were conducted to detect increased activity of GSTs, oxidases and esterases. RESULTS: Populations tested showed high levels of resistance to DDT in all 13 sites, as well as increased resistance to deltamethrin and lambda-cyhalothrin in 12 out of 13 sites. Resistance to fenitrothion and bendiocarb was detected in 1 and 4 out of 13 sites, respectively. Anopheles coluzzii, An. gambiae sensu stricto and Anopheles arabiensis were identified with high allelic frequencies of kdr in all sites where each of the species were found (13, 12 and 10 sites, respectively). Relatively low allelic frequencies of ace-1 (R) were detected in four sites where this assessment was conducted. Evidence of elevated insecticide metabolism, based on oxidase, GSTs and esterase detoxification, was also documented. CONCLUSION: Multiple insecticide-resistance mechanisms have evolved in An. coluzzii, An. gambiae s.s. and An. arabiensis in Mali. These include at least two target site modifications: kdr, and ace-1 (R) , as well as elevated metabolic detoxification systems (monooxygenases and esterases). The selection pressure for resistance could have risen from the use of these insecticides in agriculture, as well as in public health. Resistance management strategies, based on routine resistance monitoring to inform insecticide-based malaria vector control in Mali, are recommended.


Asunto(s)
Anopheles/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Insecticidas/farmacología , Animales , Anopheles/enzimología , Anopheles/genética , Bioensayo , Carbamatos/farmacología , DDT/farmacología , Femenino , Genotipo , Hidrocarburos Clorados/farmacología , Insectos Vectores/enzimología , Insectos Vectores/genética , Resistencia a los Insecticidas/genética , Resistencia a los Insecticidas/fisiología , Malí , Mutación , Organofosfatos/farmacología , Vigilancia en Salud Pública , Piretrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA