RESUMEN
The present review describes the state of the art in the conversion of pharmaceutically active ingredients (API) in amphiphilic Ionic Liquids (ILs) as alternative drug delivery systems. In particular, we focus our attention on the compounds generated by ionic exchange and without original counterions which generate different systems in comparison with the simple mixtures. In water, these new amphiphiles show similar or even better properties as surfactants in comparison with their precursors. Cations such as 1-alkyl-3-methyl-imidazolium and anions such as dioctyl sulfosuccinate or sodium dodecyl sulfate appear as the amphiphilic components most studied. In conclusion, this work shows interesting information on several promissory compounds and they appear as an interesting challenge to extend the application of ILs in the medical field.
Asunto(s)
Líquidos Iónicos , Aniones , Cationes , Ácido Dioctil Sulfosuccínico , Micelas , Dodecil Sulfato de Sodio , Tensoactivos , AguaRESUMEN
In this review, we deal with the formation and application of biocompatible water-in-oil microemulsions commonly known as reverse micelles (RMs). These RMs are extremely important to facilitate the dissolution of hydrophilic and hydrophobic compounds for biocompatibility in applications in drug delivery, food science, and nanomedicine. The combination of two wisely chosen types of compounds such as biocompatible non-polar solvents and ionic liquids (ILs) with amphiphilic character (surface-active ionic liquids, SAILs) can be used to generate organized systems that perfectly align with the Green Chemistry concepts. Thus, we describe the current state of SAILs (protic and aprotic) to prepare RMs using non-polar but safe solvents such as esters derived from fatty acids, among others. Moreover, the use of the biocompatible solvents as the external phase in RMs and microemulsions/nanoemulsions with the other commonly used biocompatible surfactants is detailed showing the diversity of preparations and important applications. As shown by multiple examples, the properties of the RMs can be modified by changes in the type of surfactant and/or external solvents but a key fact to note is that all these modifications generate novel systems with dissimilar properties. These interesting properties cannot be anticipated or extrapolated, and deep analysis is always required. Finally, the works presented provide valuable information about the use of biocompatible RMs, making them a green and promising alternative toward efficient and sustainable chemistry.
RESUMEN
In this work, two hydrolysis reactions were used as a probe to investigate the properties of reverse micelles (RMs) formed by the ionic liquid-surfactant 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate (bmim-AOT). The results were compared with those found for RMs generated with sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-AOT). As external nonpolar solvents, n-heptane (n-Hp), isopropyl myristate (IPM), and methyl laurate (ML) were used. Thus, the effect of changing the Na+ cation by bmim+ was analyzed, as well as the impact of the replacement of a conventional external nonpolar solvent by biocompatible solvents. The kinetics of the hydrolysis reactions of 4-methoxybenzoyl chloride (OMe) and 4-(trifluoromethyl)benzoyl chloride (CF3) were studied. The results indicate that the replacement of the Na+ counterion by bmim+ in AOT RMs alters the rates of reactions carried out in them and produces changes in the reaction mechanism. In bmim-AOT RMs, the bmim+ cation is located between the surfactant molecules; this has an important influence on the reaction intermediates' stability and, therefore, in the reaction rates and mechanisms. Also, the results indicate that when IPM is used as an external solvent instead of ML or n-Hp, interfacial water molecules have larger nucleophilicity due to the higher interface penetration of IPM.
RESUMEN
The present study investigated how the presence of butylmethylimidazolium cation (bmim+) alters the interfacial properties of reverse micelles (RMs) created with the ionic liquid-like surfactant 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate (bmim-AOT), in comparison to sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-AOT) RMs, employing dynamic light scattering (DLS) and 1H NMR techniques. Moreover, through the hydrolysis reaction of bis(4-nitrophenyl)carbonate inside both RMs as reaction probe, interfacial properties changes were explored in more detail. The kinetic solvent isotope effect was also analyzed. Micellar systems were formed using n-heptane as external nonpolar solvent and water as the polar component. According to the DLS studies, water is encapsulated inside the organized media; however, a different tendency is observed depending on the cationic component of the surfactant. For Na-AOT system, the results suggest that the micellar shapes are probably spherical, while in the case of bmim-AOT, a transition from ellipsoidal to spherical micelles could be occurring when water is added. 1H NMR data show that water is structured differently when Na+ cation is replaced by bmim+; in bmim-AOT RMs, the interaction of water with the surfactant is weaker and the water hydrogen-bonding network is less disturbed than in Na-AOT RMs. Kinetic studies reveal that the hydrolysis reaction in bmim-AOT RMs was much more favorable in comparison to Na-AOT RMs. In addition, when water content decreases in bmim-AOT RMs, the hydrolysis reaction rate increases and the solvent isotope effect remains constant, while for Na-AOT solutions, both the reaction rate and the solvent isotope effect decrease. Our results indicate that bmim+ cation would be located in the surfactant layer in such a way the negative charge density in the interface is less than that in Na-AOT RMs, and the reaction is more favorable. Additionally, as 1H NMR studies reveal, the interfacial water molecules would be more available in bmim-AOT RMs to participate in the nucleophilic attack. Therefore, the present study evidences how the replacement of Na+ counterion by bmim+ alters the composition of the interface of AOT RMs.
RESUMEN
Poly(amidoamine) and Poly(propylenimine) dendrimers with different generations and peripheral groups were studied as solubility enhancers and nanocarriers for 7-bromo-2-hydroxy-phenazine N 5,N 10-dioxide. This compound possesses potential antitumoral and anti-trypanosomal activity, but its low solubility in physiological media precludes its possible application as therapeutic drug. The amino terminated dendrimers association with the active compounds as observed trough NMR studies showed that electrostatic interactions are essential in the solubilization enhancement process. The obtaining of a stable and no cytotoxic formulation makes the drug-carried association a suitable strategy for the generation of a drug delivery system for phenazine derivatives.
RESUMEN
Organic macromolecules with dendrimeric architectures are polymeric materials potentially useful as nanocarriers for therapeutic drugs. In this work, we evaluate a series of Newkome-type dendrons in Langmuir and Langmuir-Blodgett films as platforms capable of interacting with a potential antitumoral agent. The nanocomposite is proposed as model for the development of surface mediated drug delivery systems. We were successful in the formation and characterization of pure (dendrons) and composite (drug-dendron) stable and reproducible monolayers, and their transfer to solid substrates. A detailed study of topographic characteristics of the generated surfaces by atomic force microscopy was conducted. Furthermore, we probed dendron monolayer films as anchorage surfaces for mammalian cells. Normal cell attachment and proliferation on the surfaces were observed. No evident cytotoxic effects were detected, demonstrating the adequate biocompatibility of the surfaces.