Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Physiol (Oxf) ; : e14215, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263899

RESUMEN

AIM: To investigate how delayed post-exercise carbohydrate intake affects muscle glycogen, metabolic- and mitochondrial-related molecular responses, and subsequent high-intensity interval exercise (HIIE) capacity. METHODS: In a double-blind cross-over design, nine recreationally active men performed HIIE (10 × 2-min cycling, ~94% W˙peak) in the fed state, on two occasions. During 0-3 h post-HIIE, participants drank either carbohydrates ("Immediate Carbohydrate" [IC], providing 2.4 g/kg) or water ("Delayed Carbohydrate" [DC]); total carbohydrate intake over 24 h post-HIIE was matched (~7 g/kg/d). Skeletal muscle (sampled pre-HIIE, post-HIIE, +3 h, +8 h, +24 h) was analyzed for whole-muscle glycogen and mRNA content, plus signaling proteins in cytoplasmic- and nuclear-enriched fractions. After 24 h, participants repeated the HIIE protocol until failure, to test subsequent HIIE capacity; blood lactate, heart rate, and ratings of perceived effort (RPE) were measured throughout. RESULTS: Muscle glycogen concentrations, and relative changes, were similar between conditions throughout (p > 0.05). Muscle glycogen was reduced from baseline (mean ± SD mmol/kg dm; IC: 409 ± 166; DC: 352 ± 76) at post-HIIE (IC: 253 ± 96; DC: 214 ± 82), +3 h (IC: 276 ± 62; DC: 269 ± 116) and + 8 h (IC: 321 ± 56; DC: 269 ± 116), returning to near-baseline by +24 h. Several genes (PGC-1ɑ, p53) and proteins (p-ACCSer79, p-P38 MAPKThr180/Tyr182) elicited typical exercise-induced changes irrespective of condition. Delaying carbohydrate intake reduced next-day HIIE capacity (5 ± 3 intervals) and increased RPE (~2 ratings), despite similar physiological responses between conditions. CONCLUSION: Molecular responses to HIIE (performed in the fed state) were not enhanced by delayed post-exercise carbohydrate intake. Our findings support immediate post-exercise refueling if the goal is to maximize next-day HIIE capacity and recovery time is ≤24 h.

2.
Int J Sports Physiol Perform ; : 1-17, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168455

RESUMEN

BACKGROUND: The benefits of oral caffeine intake to enhance several aspects of physical performance, such as aerobic endurance, strength, power, and muscle endurance performance, are well supported. However, how the physical performance benefits of caffeine supplementation are translated into better specific actions in intermittent sports during real or simulated competition has been the topic of fewer investigations, and their results need to be appropriately reviewed and meta-analyzed. OBJECTIVE: The aim of the study was to investigate the effects of acute caffeine intake on specific actions in intermittent sports involving decision making and high-intensity efforts (eg, team, racket, and combat sports) during real or simulated competitions. METHODS: All studies included had blinded and crossover experimental designs, and we conducted a risk-of-bias analysis. In total, we included 24 studies. A meta-analysis was performed using the random-effects model to calculate the standardized mean difference (SMD) estimated by Hedges g and 95% CIs. RESULTS: Caffeine ingestion increased high-intensity sport-specific actions during competition, such as the number of sprints (SMD: 0.48; 95% CI, 0.23-0.74), body impacts (SMD: 0.28; 95% CI, 0.08-0.49), accelerations (SMD: 0.35; 95% CI, 0.06-0.63), decelerations (SMD: 0.63; 95% CI, 0.12-1.14), and high-intensity offensive efforts (SMD: 0.36; 95% CI, 0.11-0.61). Additionally, caffeine ingestion induced a higher positive or success rate of actions during real or simulated competition (SMD: 0.44; 95% CI, 0.19-0.69). CONCLUSION: The current meta-analysis provides evidence of caffeine supplementation in increasing high-intensity efforts and the success rate of sport-specific actions during real or simulated competition.

3.
Nutrients ; 16(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276556

RESUMEN

There is a growing interest in studies involving carbohydrate (CHO) manipulation and subsequent adaptations to endurance training. This study aimed to analyze whether a periodized carbohydrate feeding strategy based on a daily training session has any advantages compared to a high-carbohydrate diet in well-trained cyclists. Seventeen trained cyclists (VO2peak = 70.8 ± 6.5 mL·kg-1·min-1) were divided into two groups, a periodized (PCHO) group and a high-carbohydrate (HCHO) group. Both groups performed the same training sessions for five weeks. In the PCHO group, 13 training sessions were performed with low carbohydrate availability. In the HCHO group, all sessions were completed following previous carbohydrate intake to ensure high pre-exercise glycogen levels. In both groups, there was an increase in the maximal lactate steady state (MLSS) (PCHO: 244.1 ± 29.9 W to 253.2 ± 28.4 W; p = 0.008; HCHO: 235.8 ± 21.4 W to 246.9 ± 16.7 W; p = 0.012) but not in the time to exhaustion at MLSS intensity. Both groups increased the percentage of muscle mass (PCHO: p = 0.021; HCHO: p = 0.042) and decreased the percent body fat (PCHO: p = 0.021; HCHO: p = 0.012). We found no differences in carbohydrate or lipid oxidation, heart rate, and post-exercise lactate concentration. Periodizing the CHO intake in well-trained cyclists during a 5-week intervention did not elicit superior results to an energy intake-matched high-carbohydrate diet in any of the measured outcomes.


Asunto(s)
Hexaclorociclohexano/análogos & derivados , Ácido Láctico , Resistencia Física , Humanos , Resistencia Física/fisiología , Tolerancia al Ejercicio , Glucógeno/metabolismo , Dieta , Carbohidratos de la Dieta , Consumo de Oxígeno
4.
Crit Rev Food Sci Nutr ; 63(29): 9859-9874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35475945

RESUMEN

The interest in the benefits of caffeine in combat sports has grown exponentially in the last few years, evidenced by the significant rise of post-competition urine caffeine concentration. We conduct a systematic review and meta-analysis on the effects of caffeine on different performance variables in combat sports athletes. In total, we included 25 studies. All studies included had blinded, and cross-over experimental designs, and we conducted a risk of bias analysis. For nonspecific outcomes, there was an ergogenic effect of caffeine on vertical jump height (SMD: 0.38; 95% CI: 0.04, 0.71) and reaction time (SMD: -0.98, 95% CI: -1.46,-0.50). For outcomes specific to combat sports, there was an increase in the number of throws with caffeine in the Special Judo Fitness Test (SMD: 0.62; 95% CI: 0.14, 1.09). Caffeine ingestion increased the number of offensive actions during combats (SMD: 0.40; 95% CI: 0.06, 0.74). Caffeine ingestion increased the duration of offensive actions during combat (SMD: 0.58; 95% CI: 0.21, 0.96). Finally, caffeine ingestion increased blood lactate concentration after bout 1 (SMD: 1.35) bout 2 (SMD: 1.43) and bout 3 (SMD: 1.98). Overall, athletes competing in combat sports may consider supplementing with caffeine for an acute increase in exercise performance.


Asunto(s)
Rendimiento Atlético , Sustancias para Mejorar el Rendimiento , Humanos , Cafeína/farmacología , Ejercicio Físico , Sustancias para Mejorar el Rendimiento/farmacología , Ácido Láctico
5.
Nutrients ; 13(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578821

RESUMEN

Caffeine (1,3,7-trimethylxanthine) is one of the most common substances used by athletes to enhance their performance during competition. Evidence suggests that the performance-enhancing properties of caffeine can be obtained by employing several forms of administration, namely, capsules/tablets, caffeinated drinks (energy drinks and sports drinks), beverages (coffee), and chewing gum. However, caffeinated drinks have become the main form of caffeine administration in sport due to the wide presence of these products in the market. The objective of this systematic review is to evaluate the different effects of caffeinated drinks on physical performance in various sports categories such as endurance, power-based sports, team sports, and skill-based sports. A systematic review of published studies was performed on scientific databases for studies published from 2000 to 2020. All studies included had blinded and cross-over experimental designs, in which the ingestion of a caffeinated drink was compared to a placebo/control trial. The total number of studies included in this review was 37. The analysis of the included studies revealed that both sports drinks with caffeine and energy drinks were effective in increasing several aspects of sports performance when the amount of drink provides at least 3 mg of caffeine per kg of body mass. Due to their composition, caffeinated sports drinks seem to be more beneficial to consume during long-duration exercise, when the drinks are used for both rehydration and caffeine supplementation. Energy drinks may be more appropriate for providing caffeine before exercise. Lastly, the magnitude of the ergogenic benefits obtained with caffeinated drinks seems similar in women and men athletes. Overall, the current systematic review provides evidence of the efficacy of caffeinated drinks as a valid form for caffeine supplementation in sport.


Asunto(s)
Rendimiento Atlético/estadística & datos numéricos , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Bebidas Energéticas/estadística & datos numéricos , Sustancias para Mejorar el Rendimiento/farmacología , Atletas/estadística & datos numéricos , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA