Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prog Retin Eye Res ; 91: 101093, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817658

RESUMEN

The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.


Asunto(s)
Enfermedades de la Retina , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular/fisiología , Ojo , Retina/metabolismo , Transducción de Señal , Enfermedades de la Retina/metabolismo
2.
Methods Mol Biol ; 2092: 35-43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31786779

RESUMEN

Retinal neurons and glia in the adult vertebrate retina are differentiated from multipotent retinal progenitors in the eyecups under the regulation of intrinsic and extrinsic factors, but the molecular mechanism underlying the process is partially understood. Functional studies using engineered mice provide tremendous insight into the mechanisms of retinal cell differentiation, but in utero embryogenesis prevents manipulations of mouse embryonic retina. Mouse eyecup culture using a culture filter or insert has been developed, but retinal structure is often altered due to the flattening of mouse eyecups in these culture systems. In this chapter, we describe three-dimensional culture of embryonic mouse eyecups. In our system, cell differentiation, stratified retinal structure, and ciliary margins in cultured eyecups were reminiscent of those in vivo. Our 3D culture of mouse eyecups has multiple applications when wild-type or engineered mice are used as models for studying retinal cell differentiation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Retina/citología , Animales , Diferenciación Celular/fisiología , Ratones , Neuroglía/citología , Neuronas/citología
3.
Cell Rep ; 25(9): 2510-2523.e4, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485816

RESUMEN

Gene regulation of multipotent neuroretinal progenitors is partially understood. Through characterizing Six3 and Six6 double knockout retinas (DKOs), we demonstrate Six3 and Six6 are jointly required for the maintenance of multipotent neuroretinal progenitors. Phenotypes in DKOs were not found in either Six3 nulls or Six6 nulls. At the far periphery, ciliary margin (CM) markers Otx1 and Cdon together with Wnt3a and Fzd1 were ectopically upregulated, whereas neuroretinal progenitor markers Sox2, Notch1, and Otx2 were absent or reduced. At the mid periphery, multi-lineage differentiation was defective. The gene set jointly regulated by Six3 and Six6 significantly overlapped with the gene networks regulated by WNT3A, CTNNB1, POU4F2, or SOX2. Stimulation of Wnt/ß-catenin signaling by either Wnt-3a or a GS3Kß inhibitor promoted CM progenitors at the cost of neuroretinal identity at the periphery of eyecups. Therefore, Six3 and Six6 together directly or indirectly suppress Wnt/ß-catenin signaling but promote retinogenic factors for the maintenance of multipotent neuroretinal progenitors.


Asunto(s)
Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Células Madre Multipotentes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retina/metabolismo , Transactivadores/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Cilios/metabolismo , Embrión de Mamíferos/citología , Redes Reguladoras de Genes , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones Noqueados , Retina/patología , Regulación hacia Arriba , Vía de Señalización Wnt , Proteína Wnt3A/metabolismo , Proteína Homeobox SIX3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA