Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7417, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973815

RESUMEN

The early-life gut microbiome development has long-term health impacts and can be influenced by factors such as infant diet. Human milk oligosaccharides (HMOs), an essential component of breast milk that can only be metabolized by some beneficial gut microorganisms, ensure proper gut microbiome establishment and infant development. However, how HMOs are metabolized by gut microbiomes is not fully elucidated. Isolate studies have revealed the genetic basis for HMO metabolism, but they exclude the possibility of HMO assimilation via synergistic interactions involving multiple organisms. Here, we investigate microbiome responses to 2'-fucosyllactose (2'FL), a prevalent HMO and a common infant formula additive, by establishing individualized microbiomes using fecal samples from three infants as the inocula. Bifidobacterium breve, a prominent member of infant microbiomes, typically cannot metabolize 2'FL. Using metagenomic data, we predict that extracellular fucosidases encoded by co-existing members such as Ruminococcus gnavus initiate 2'FL breakdown, thus critical for B. breve's growth. Using both targeted co-cultures and by supplementation of R. gnavus into one microbiome, we show that R. gnavus can promote extensive growth of B. breve through the release of lactose from 2'FL. Overall, microbiome cultivation combined with genome-resolved metagenomics demonstrates that HMO utilization can vary with an individual's microbiome.


Asunto(s)
Bifidobacterium , Microbiota , Femenino , Niño , Humanos , Lactante , Bifidobacterium/genética , Bifidobacterium/metabolismo , Trisacáridos/metabolismo , Leche Humana/química , Oligosacáridos/metabolismo
2.
Cell ; 183(4): 918-934.e49, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113354

RESUMEN

Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.


Asunto(s)
Envejecimiento/patología , Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Aprendizaje , Potenciales de Acción , Animales , Conducta Animal , Biomarcadores/metabolismo , Cuerpo Estriado/fisiopatología , Aprendizaje Discriminativo , Modelos Animales de Enfermedad , Enfermedad de Huntington/fisiopatología , Interneuronas/patología , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/fisiopatología , Parvalbúminas/metabolismo , Fotometría , Recompensa , Análisis y Desempeño de Tareas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA