Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1397940, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751999

RESUMEN

Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.


Asunto(s)
Biopelículas , Haemophilus influenzae , Moraxella catarrhalis , Infecciones por Moraxellaceae , Moraxella catarrhalis/fisiología , Humanos , Haemophilus influenzae/fisiología , Haemophilus influenzae/patogenicidad , Biopelículas/crecimiento & desarrollo , Infecciones por Moraxellaceae/microbiología , Infección Persistente/microbiología , Interacciones Huésped-Patógeno , Infecciones por Haemophilus/microbiología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Modelos Biológicos , Infecciones del Sistema Respiratorio/microbiología , Células Epiteliales/microbiología
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256189

RESUMEN

Shigellosis, an acute gastroenteritis infection caused by Shigella species, remains a public health burden in developing countries. Recently, many outbreaks due to Shigella sonnei multidrug-resistant strains have been reported in high-income countries, and the lack of an effective vaccine represents a major hurdle to counteract this bacterial pathogen. Vaccine candidates against Shigella sonnei are under clinical development, including a Generalized Modules for Membrane Antigens (GMMA)-based vaccine. The mechanisms by which GMMA-based vaccines interact and activate human immune cells remain elusive. Our previous study provided the first evidence that both adaptive and innate immune cells are targeted and functionally shaped by the GMMA-based vaccine. Here, flow cytometry and confocal microscopy analysis allowed us to identify monocytes as the main target population interacting with the S. sonnei 1790-GMMA vaccine on human peripheral blood. In addition, transcriptomic analysis of this cell population revealed a molecular signature induced by 1790-GMMA mostly correlated with the inflammatory response and cytokine-induced processes. This also impacts the expression of genes associated with macrophages' differentiation and T cell regulation, suggesting a dual function for this vaccine platform both as an antigen carrier and as a regulator of immune cell activation and differentiation.


Asunto(s)
Antígenos de Grupos Sanguíneos , Gastroenteritis , Metilmetacrilatos , Vacunas , Humanos , Monocitos , Shigella sonnei/genética , Antígenos Bacterianos/genética
3.
PLoS One ; 14(8): e0203234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31369555

RESUMEN

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein of Neisseria meningitidis and a component of the Bexsero vaccine. NHBA is characterized by the presence of a highly conserved Arg-rich region involved in binding to heparin and heparan sulphate proteoglycans present on the surface of host epithelial cells, suggesting a possible role of NHBA during N. meningitidis colonization. NHBA has been shown to be cleaved by the meningococcal protease NalP and by human lactoferrin (hLF), a host protease presents in different body fluids (saliva, breast milk and serum). Cleavage occurs upstream or downstream the Arg-rich region. Since the human nasopharynx is the only known reservoir of infection, we further investigated the susceptibility of NHBA to human proteases present in the saliva to assess whether proteolytic cleavage could happen during the initial steps of colonization. Here we show that human saliva proteolytically cleaves NHBA, and identified human kallikrein 1 (hK1), a serine protease, as responsible for this cleavage. Kallikrein-related peptidases (KLKs) have a distinct domain structure and exist as a family of 15 genes which are differentially expressed in many tissues and in the central nervous system. They are present in plasma, lymph, urine, saliva, pancreatic juices, and other body fluids where they catalyze the proteolysis of several human proteins. Here we report the characterization of NHBA cleavage by the tissue kallikrein, expressed in saliva and the identification of the cleavage site on NHBA both, as recombinant protein or as native protein, when expressed on live bacteria. Overall, these findings provide new insights on NHBA as target of host proteases, highlights thepotential role of NHBA in the Neisseria meningitidis nasopharyngeal colonization, and of kallikrein as a defensive agent against meningococcal infection.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Infecciones Meningocócicas/microbiología , Proteolisis , Saliva/química , Calicreínas de Tejido/metabolismo , Secuencia de Aminoácidos , Humanos , Neisseria meningitidis/fisiología , Proteómica
4.
PLoS One ; 13(3): e0194662, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29579105

RESUMEN

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , C3 Convertasa de la Vía Alternativa del Complemento/metabolismo , Neisseria/metabolismo , Secuencia de Aminoácidos , Antígenos Bacterianos/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Portadoras/química , Línea Celular , Ácido Edético/farmacología , Células Epiteliales/citología , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Humanos , Magnesio/química , Magnesio/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Proteómica , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Zinc/química , Zinc/metabolismo
5.
PLoS One ; 11(10): e0162878, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27780200

RESUMEN

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization.


Asunto(s)
Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Células Epiteliales/microbiología , Infecciones Meningocócicas/tratamiento farmacológico , Neisseria meningitidis/fisiología , Anticuerpos Antibacterianos/química , Sitios de Unión , Línea Celular , Técnicas de Inactivación de Genes , Proteoglicanos de Heparán Sulfato/metabolismo , Heparina/metabolismo , Humanos , Lactoferrina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/prevención & control , Mutación , Neisseria meningitidis/inmunología , Proteínas Recombinantes/metabolismo , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA