Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(23): e111289, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36221902

RESUMEN

The NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self-assembling entities that coat the bacteria to induce NF-κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF-κB activation. IRGM suppresses RIPK2-dependent pro-inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection- and DSS-induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.


Asunto(s)
Infecciones Bacterianas , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Ratones Endogámicos NOD , Autofagia , Inmunidad Innata , Homeostasis
2.
FEBS J ; 289(14): 4112-4131, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34826185

RESUMEN

Extensive crosstalk exists between autophagy and innate immune signalling pathways. The stimuli that induce pattern recognition receptor (PRR)-mediated innate immune signalling pathways, also upregulate autophagy. The purpose of this increased autophagy is to eliminate the stimuli and/or suppress the inflammatory pathways by targeted degradation of PRRs or intermediary proteins (termed 'inflammophagy'). By executing these functions, autophagy dampens excess inflammation triggered by the innate immune signalling pathways. Thus, autophagy helps in the maintenance of the body's innate immune homeostasis to protect from inflammatory and autoimmune diseases. Many autophagy-dependent mechanisms that could control innate immune signalling have been studied over the last few years. However, still, the understanding is incomplete, and studies that are more systematic should be undertaken to delineate the mechanisms of inflammophagy. Here, we discuss the available knowledge of crosstalk between autophagy and PRR signalling pathways.


Asunto(s)
Autofagia , Inmunidad Innata , Homeostasis , Humanos , Inflamación , Transducción de Señal
3.
Autophagy ; 17(2): 578-580, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32813580

RESUMEN

IRGM is a genetic risk factor for several autoimmune diseases. However, the mechanism of IRGM-mediated protection in autoimmunity remains undetermined. The abnormal activation of type I interferon (IFN) response is one of the significant factors in the pathogenesis of several autoimmune diseases. In our recent study, we showed that IRGM is a master suppressor of the interferon response. We found that the depletion of IRGM results in constitutively activated CGAS-STING1, DDX58/RIG-I-MAVS, and TLR3-TICAM1/TRIF signaling pathways resulting in upregulation of almost all IFN-responsive genes. Mechanistically, IRGM utilizes a two-pronged mechanism to suppress the interferon response. First, it mediates SQSTM1/p62-dependent selective macroautophagy/autophagy of nucleic acid sensor proteins, including CGAS, DDX58/RIG-I, and TLR3. Second, it facilitates the removal of defective mitochondria by mitophagy and avoids a buildup of mito-ROS and mito-damage/danger-associated molecular patterns (DAMPs). Thus, IRGM deficiency results in increased nucleic acid sensors and DAMPs engaging a vicious cycle of aberrant activation of IFN response that is known to occur in systemic autoimmune-like conditions.


Asunto(s)
Autoinmunidad/inmunología , Autofagia/fisiología , Proteínas de Unión al GTP/metabolismo , Mitocondrias/metabolismo , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Humanos , Transducción de Señal/fisiología
4.
EMBO Rep ; 21(9): e50051, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32715615

RESUMEN

Activation of the type 1 interferon response is extensively connected to the pathogenesis of autoimmune diseases. Loss of function of Immunity Related GTPase M (IRGM) has also been associated to several autoimmune diseases, but its mechanism of action is unknown. Here, we found that IRGM is a master negative regulator of the interferon response. Several nucleic acid-sensing pathways leading to interferon-stimulated gene expression are highly activated in IRGM knockout mice and human cells. Mechanistically, we show that IRGM interacts with nucleic acid sensor proteins, including cGAS and RIG-I, and mediates their p62-dependent autophagic degradation to restrain interferon signaling. Further, IRGM deficiency results in defective mitophagy leading to the accumulation of defunct leaky mitochondria that release cytosolic DAMPs and mtROS. Hence, IRGM deficiency increases not only the levels of the sensors, but also those of the stimuli that trigger the activation of the cGAS-STING and RIG-I-MAVS signaling axes, leading to robust induction of IFN responses. Taken together, this study defines the molecular mechanisms by which IRGM maintains interferon homeostasis and protects from autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Animales , Enfermedades Autoinmunes/genética , Autoinmunidad/genética , Autofagia , Ratones , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal
5.
Autophagy ; 15(9): 1645-1647, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31177914

RESUMEN

IRGM is an established genetic risk factor for Crohn disease (CD) and several other inflammatory disorders. However, the mechanisms employed by IRGM to restrain the inflammation are not known. In our recent study, we showed that IRGM negatively regulates NLRP3 inflammasome activation. IRGM employs 2 parallel approaches to constrain inflammasome activation. First, IRGM directly interacts with NLRP3 and PYCARD/ASC, and mediates their SQSTM1/p62-dependent macroautophagic/autophagic degradation. Second, IRGM impedes inflammasome assembly by blocking the polymerization of NLRP3 and PYCARD. We also found that IRGM suppresses NLRP3-mediated exacerbated outcomes of dextran sodium sulfate (DSS)-induced colitis in a mouse model. Taken together, this study presents evidence that IRGM can directly regulate inflammation and protect from inflammatory diseases.


Asunto(s)
Autofagia , Inflamasomas , Animales , Sulfato de Dextran , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína Sequestosoma-1
6.
Autophagy ; 15(5): 924-926, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30806139

RESUMEN

The formation of protein aggregates is linked to several diseases collectively called proteinopathies. The mechanisms and the molecular players that control the turnover of protein aggregates are not well defined. We recently showed that TRIM16 acts as a key regulatory protein to control the biogenesis and degradation of protein aggregates. We show that TRIM16 interacts with, enhances K63-linked ubiquitination of, and stabilizes NFE2L2/NRF2 leading to its activation. The activated NFE2L2 upregulates the SQSTM1/p62 and ubiquitin pathway proteins, which interact with and ubiquitinate the misfolded proteins resulting in protein aggregate formation. TRIM16 is physically present around the protein aggregates and acts as a scaffold protein to recruit SQSTM1 and macroautophagy/autophagy initiation proteins for sequestration of the protein aggregates within autophagosomes, leading to their degradation. Hence, TRIM16 utilizes a two-pronged approach to safely dispose of the stress-induced misfolded proteins and protein aggregates, and protect cells from oxidative and proteotoxic stresses. This study could provide a framework for understanding the mechanisms of protein aggregate formation in neurodegeneration. The enhancement of TRIM16 activity could be a beneficial therapeutic approach in proteinopathies. On the flip side, cancer cells appear to hijack this machinery for their survival under stress conditions; hence, depleting TRIM16 could be a beneficial therapeutic strategy for treating cancer.


Asunto(s)
Autofagia , Agregado de Proteínas , Proteína Sequestosoma-1 , Proteínas Ubiquitinadas , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA