Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 174: 103924, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094785

RESUMEN

Fusarium head blight (FHB) is a major disease of wheat and barley worldwide and is caused by different species in the genus Fusarium, Fusarium graminearum being the most important. We conducted population genomics analyses using SNPs obtained through genotyping by sequencing of over 500 isolates of F. graminearum from the US Upper Midwest, New York, Louisiana, and Uruguay. PCA and STRUCTURE analyses group our isolates into four previously described populations: NA1, NA2, Southern Louisiana (SLA) and Gulf Coast (GC). Some isolates were not assigned to populations because of mixed ancestry. Population structure was associated with toxin genotype and geographic origin. The NA1, NA2, and SLA populations are differentiated (FST 0.385 - 0.551) but the presence of admixed isolates indicates that the populations are not reproductively isolated. Patterns of linkage disequilibrium (LD) decay suggest frequent recombination within populations. Fusarium graminearum populations from the US have great evolutionary potential given the high recombination rate and a large proportion of admixed isolates. The NA1, NA2, and Southern Louisiana (SLA) populations separated from their common ancestral population roughly at the same time in the past and are evolving with moderate levels of subsequent gene flow between them. Genome-wide selection scans in all three populations revealed outlier regions with the strongest signatures of recent positive natural selection. These outlier regions include many genes with unknown function and some genes with known roles in plant-microbe interaction, fungicide/drug resistance, cellular transport and genes that are related to cellular organelles. Only a very small proportion of outlier regions are shared as outliers among the three populations, suggesting unique host-pathogen interactions and environmental adaptation.


Asunto(s)
Fusarium , Desequilibrio de Ligamiento , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Fusarium/genética , Fusarium/clasificación , Fusarium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética , Triticum/microbiología , Genoma Fúngico/genética , Américas , Genotipo , Genómica , Metagenómica , Hordeum/microbiología , Uruguay
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA