Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34849560

RESUMEN

Prostate cancer is the second leading cause of cancer-related death in men. Metastasis shows poor survival even though the recovery rate is high. In spite of numerous studies regarding prostate carcinoma, multiple questions are still unanswered. In this regards, gene regulatory network can uncover the mechanisms behind cancer progression, and metastasis. Under a feed forward loop, transcription factors (TFs) can be a good druggable candidate. We have proposed a computational model to study the uncertainty of TFs and suggest the appropriate cellular conditions for drug targeting. We have selected feed-forward loops depending on the shared list of the functional annotations among TFs, genes and miRNAs. From the potential feed forward loop cores, six TFs were identified as druggable targets, which include AR, CEBPB, CREB1, ETS1, NFKB1 and RELA. However, TFs are known for their Protein Moonlighting properties, which provide unrelated multi-functionalities within the same or different subcellular localizations. Following that, we have identified such functions that are suitable for drug targeting. On the other hand, we have tried to identify membraneless organelles for providing more specificity to the proposed time and space theory. The study has provided certain possibilities on TF-based therapeutics. The controlled dynamic nature of the TF may have enhanced the chances where TFs can be considered as one of the prime drug targets. Finally, the combination of membranless phase separation and protein moonlighting has provided possible druggable period within the biological clock.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias de la Próstata , Factores de Transcripción , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Sci Rep ; 11(1): 16365, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381149

RESUMEN

Parkinson's disease is a common neurodegenerative disease. The differential expression of alpha-synuclein within Lewy Bodies leads to this disease. Some missense mutations of alpha-synuclein may resultant in functional aberrations. In this study, our objective is to verify the functional adaptation due to early and late-onset mutation which can trigger or control the rate of alpha-synuclein aggregation. In this regard, we have proposed a computational model to study the difference and similarities among the Wild type alpha-synuclein and mutants i.e., A30P, A53T, G51D, E46K, and H50Q. Evolutionary sequence space analysis is also performed in this experiment. Subsequently, a comparative study has been performed between structural information and sequence space outcomes. The study shows the structural variability among the selected subtypes. This information assists inter pathway modeling due to mutational aberrations. Based on the structural variability, we have identified the protein-protein interaction partners for each protein that helps to increase the robustness of the inter-pathway connectivity. Finally, few pathways have been identified from 12 semantic networks based on their association with mitochondrial dysfunction and dopaminergic pathways.


Asunto(s)
Mutación/genética , Enfermedad de Parkinson/genética , Transducción de Señal/genética , alfa-Sinucleína/genética , Dopamina/genética , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Agregación Patológica de Proteínas/genética
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34143202

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of the coronavirus disease (COVID-19), is a part of the $\beta $-Coronaviridae family. The virus contains five major protein classes viz., four structural proteins [nucleocapsid (N), membrane (M), envelop (E) and spike glycoprotein (S)] and replicase polyproteins (R), synthesized as two polyproteins (ORF1a and ORF1ab). Due to the severity of the pandemic, most of the SARS-CoV-2-related research are focused on finding therapeutic solutions. However, studies on the sequences and structure space throughout the evolutionary time frame of viral proteins are limited. Besides, the structural malleability of viral proteins can be directly or indirectly associated with the dysfunctionality of the host cell proteins. This dysfunctionality may lead to comorbidities during the infection and may continue at the post-infection stage. In this regard, we conduct the evolutionary sequence-structure analysis of the viral proteins to evaluate their malleability. Subsequently, intrinsic disorder propensities of these viral proteins have been studied to confirm that the short intrinsically disordered regions play an important role in enhancing the likelihood of the host proteins interacting with the viral proteins. These interactions may result in molecular dysfunctionality, finally leading to different diseases. Based on the host cell proteins, the diseases are divided in two distinct classes: (i) proteins, directly associated with the set of diseases while showing similar activities, and (ii) cytokine storm-mediated pro-inflammation (e.g. acute respiratory distress syndrome, malignancies) and neuroinflammation (e.g. neurodegenerative and neuropsychiatric diseases). Finally, the study unveils that males and postmenopausal females can be more vulnerable to SARS-CoV-2 infection due to the androgen-mediated protein transmembrane serine protease 2.


Asunto(s)
COVID-19/genética , Genoma Viral/genética , Conformación Proteica , SARS-CoV-2/ultraestructura , COVID-19/virología , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/ultraestructura , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/ultraestructura , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Proteinas del Complejo de Replicasa Viral/genética , Proteinas del Complejo de Replicasa Viral/ultraestructura , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/ultraestructura
4.
Brief Bioinform ; 22(2): 914-923, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32968798

RESUMEN

The novel coronavirus or COVID-19 has first been found in Wuhan, China, and became pandemic. Angiotensin-converting enzyme 2 (ACE2) plays a key role in the host cells as a receptor of Spike-I Glycoprotein of COVID-19 which causes final infection. ACE2 is highly expressed in the bladder, ileum, kidney and liver, comparing with ACE2 expression in the lung-specific pulmonary alveolar type II cells. In this study, the single-cell RNAseq data of the five tissues from different humans are curated and cell types with high expressions of ACE2 are identified. Subsequently, the protein-protein interaction networks have been established. From the network, potential biomarkers which can form functional hubs, are selected based on k-means network clustering. It is observed that angiotensin PPAR family proteins show important roles in the functional hubs. To understand the functions of the potential markers, corresponding pathways have been researched thoroughly through the pathway semantic networks. Subsequently, the pathways have been ranked according to their influence and dependency in the network using PageRank algorithm. The outcomes show some important facts in terms of infection. Firstly, renin-angiotensin system and PPAR signaling pathway can play a vital role for enhancing the infection after its intrusion through ACE2. Next, pathway networks consist of few basic metabolic and influential pathways, e.g. insulin resistance. This information corroborate the fact that diabetic patients are more vulnerable to COVID-19 infection. Interestingly, the key regulators of the aforementioned pathways are angiontensin and PPAR family proteins. Hence, angiotensin and PPAR family proteins can be considered as possible therapeutic targets. Contact: sagnik.sen2008@gmail.com, umaulik@cse.jdvu.ac.in Supplementary information: Supplementary data are available online.


Asunto(s)
COVID-19/metabolismo , SARS-CoV-2/patogenicidad , Algoritmos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Humanos , Íleon/metabolismo , Íleon/patología , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Mapas de Interacción de Proteínas , Sistema Renina-Angiotensina/fisiología , Transducción de Señal , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología
5.
J Biomol Struct Dyn ; 39(3): 1093-1105, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32081083

RESUMEN

POU domain class 2 homebox 1 or POU2F1 is broadly known as an important transcription factor. Due to its association with different types of malignancies, POU2F1 became one of the key factors in pancancer analysis. However, in spite of considering this protein as a potential drug target, none of the drug targeting POU2F1 has been designed as of yet due to the extreme structural flexibility of this protein. In this article, we have proposed a three-level comprehensive framework for understanding the structural conservation and co-variation of POU2F1. First, a gene regulatory network based on the normal and pathological functions of POU2F1 has been created for better understanding the strong association between POU2F1 deregulation and cancers. After that, based on the evolutionary sequence space analysis, the comparative sequence dynamics of the protein members of POU domain family has been studied mostly between non-human and human species. Subsequently, the reciprocity effect of the residual co-variation has been identified through direct coupling analysis. Along with that, the structure of POU2F1 has been analyzed depending on quality assessment and normal mode-based structure network. Comparing the sequence and structure space information, the most significant set of residues viz., 3, 9, 13, 17, 20, 21, 28, 35, and 36 have been identified as structural facet for function. This study demonstrates that the structural malleability of POU2F1 serves as one of the prime reason behind its functional multiplicity in terms of protein moonlighting. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Regulación de la Expresión Génica , Factor 1 de Transcripción de Unión a Octámeros/química , Factores de Transcripción , Humanos , Factor 1 de Transcripción de Unión a Octámeros/genética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo
6.
Front Genet ; 11: 982, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281862

RESUMEN

Genome-wide analysis of miRNA molecules can reveal important information for understanding the biology of cancer. Typically, miRNAs are used as features in statistical learning methods in order to train learning models to predict cancer. This motivates us to propose a method that integrates clustering and classification techniques for diverse cancer types with survival analysis via regression to identify miRNAs that can potentially play a crucial role in the prediction of different types of tumors. Our method has two parts. The first part is a feature selection procedure, called the stochastic covariance evolutionary strategy with forward selection (SCES-FS), which is developed by integrating stochastic neighbor embedding (SNE), the covariance matrix adaptation evolutionary strategy (CMA-ES), and classifiers, with the primary objective of selecting biomarkers. SNE is used to reorder the features by performing an implicit clustering with highly correlated neighboring features. A subset of features is selected heuristically to perform multi-class classification for diverse cancer types. In the second part of our method, the most important features identified in the first part are used to perform survival analysis via Cox regression, primarily to examine the effectiveness of the selected features. For this purpose, we have analyzed next generation sequencing data from The Cancer Genome Atlas in form of miRNA expression of 1,707 samples of 10 different cancer types and 333 normal samples. The SCES-FS method is compared with well-known feature selection methods and it is found to perform better in multi-class classification for the 17 selected miRNAs, achieving an accuracy of 96%. Moreover, the biological significance of the selected miRNAs is demonstrated with the help of network analysis, expression analysis using hierarchical clustering, KEGG pathway analysis, GO enrichment analysis, and protein-protein interaction analysis. Overall, the results indicate that the 17 selected miRNAs are associated with many key cancer regulators, such as MYC, VEGFA, AKT1, CDKN1A, RHOA, and PTEN, through their targets. Therefore the selected miRNAs can be regarded as putative biomarkers for 10 types of cancer.

7.
BMC Bioinformatics ; 19(Suppl 13): 549, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717651

RESUMEN

BACKGROUND: Malignant diseases have become a threat for health care system. A panoply of biological processes is involved as the cause of these diseases. In order to unveil the mechanistic details of these diseased states, we analyzed protein families relevant to these diseases. RESULTS: Our present study pivots around four apparently unrelated cancer types among which two are commonly occurring viz. Prostate Cancer, Breast Cancer and two relatively less frequent viz. Acute Lymphoblastic Leukemia and Lymphoma. Eight protein families were found to have implications for these cancer types. Our results strikingly reveal that some of the proteins with implications in the cancerous cellular states were showing the structural organization disparate from the signature of the family it constitutes. The sequences were further mapped onto respective structures and compared with the entropic profile. The structures reveal that entropic scores were able to reveal the inherent structural bias of these proteins with quantitative precision, otherwise unseen from other analysis. Subsequently, the betweenness centrality scoring of each residue from the structure network models was resorted to explore the changes in dependencies on residue owing to structural disorder. CONCLUSION: These observations help to obtain the mechanistic changes resulting from the structural orchestration of protein structures. Finally, the hydropathy indexes were obtained to validate the sequence space observations using Shannon entropy and in-turn establishing the compatibility.


Asunto(s)
Entropía , Evolución Molecular , Proteínas Intrínsecamente Desordenadas/química , Neoplasias/metabolismo , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA