Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4711, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949095

RESUMEN

Non-alcoholic steatohepatitis (NASH), characterized as the joint presence of steatosis, hepatocellular ballooning and lobular inflammation, and liver fibrosis are strong contributors to liver-related and overall mortality. Despite the high global prevalence of NASH and the substantial healthcare burden, there are currently no FDA-approved therapies for preventing or reversing NASH and/or liver fibrosis. Importantly, despite nearly 200 pharmacotherapies in different phases of pre-clinical and clinical assessment, most therapeutic approaches that succeed from pre-clinical rodent models to the clinical stage fail in subsequent Phase I-III trials. In this respect, one major weakness is the lack of adequate mouse models of NASH that also show metabolic comorbidities commonly observed in NASH patients, including obesity, type 2 diabetes and dyslipidaemia. This study provides an in-depth comparison of NASH pathology and deep metabolic profiling in eight common inbred mouse strains (A/J, BALB/c, C3H/HeJ, C57BL/6J, CBA/CaH, DBA/2J, FVB/N and NOD/ShiLtJ) fed a western-style diet enriched in fat, sucrose, fructose and cholesterol for eight months. Combined analysis of histopathology and hepatic lipid metabolism, as well as measures of obesity, glycaemic control and insulin sensitivity, dyslipidaemia, adipose tissue lipolysis, systemic inflammation and whole-body energy metabolism points to the FVB/N mouse strain as the most adequate diet-induced mouse model for the recapitulation of metabolic (dysfunction) associated fatty liver disease (MAFLD) and NASH. With efforts in the pharmaceutical industry now focussed on developing multi-faceted therapies; that is, therapies that improve NASH and/or liver fibrosis, and concomitantly treat other metabolic comorbidities, this mouse model is ideally suited for such pre-clinical use.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C3H , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Ratones Endogámicos C57BL , Hígado/metabolismo , Cirrosis Hepática/patología , Inflamación/patología , Obesidad/metabolismo , Modelos Animales de Enfermedad
2.
Am J Physiol Endocrinol Metab ; 324(2): E187-E198, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629823

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Dysregulation in hepatic lipid metabolism, including increased fatty acid uptake and de novo lipogenesis (DNL), is a hallmark of NAFLD. Here, we investigated dual inhibition of the fatty acid transporter fatty acid translocase (FAT/CD36), and acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL, for the treatment of NAFLD in mice. Mice with hepatic CD36 deletion (Cd36LKO) and wild-type littermates were fed a high-fat diet for 12 wk and treated daily with either oral administration of an ACC inhibitor (GS-834356, Gilead Sciences; ACCi) or vehicle for 8 wk. Neither CD36 deletion or ACC inhibition impacted body composition, energy expenditure, or glucose tolerance. Cd36LKO mice had elevated fasting plasma insulin, suggesting mild insulin resistance. Whole body fatty acid oxidation was significantly decreased in Cd36LKO mice. Liver triglyceride content was significantly reduced in mice treated with ACCi; however, CD36 deletion caused an unexpected increase in liver triglycerides. This was associated with upregulation of genes and proteins of DNL, including ACC, and decreased liver triglyceride secretion ex vivo. Overall, these data confirm the therapeutic utility of ACC inhibition for steatosis resolution but indicate that inhibition of CD36 is not an effective treatment for NAFLD in mice.NEW & NOTEWORTHY Dysregulation of hepatic lipid metabolism is a hallmark of nonalcoholic fatty liver disease. Here, we show that dual inhibition of the de novo lipogenesis enzyme, ACC, and hepatic deletion of the fatty acid transporter, CD36, was ineffective for the treatment of NAFLD in mice. This was due to a paradoxical increase in liver triglycerides with CD36 deletion resulting from decreased hepatic triglyceride secretion and increased lipogenic gene expression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Lipogénesis/genética , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA