Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chaos ; 31(12): 123119, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34972332

RESUMEN

A dynamical billiard consists of a point particle moving uniformly except for mirror-like collisions with the boundary. Recent work has described the escape of the particle through a hole in the boundary of a circular or spherical billiard, making connections with the Riemann Hypothesis. Unlike the circular case, the sphere with a single hole leads to a non-zero probability of never escaping. Here, we study variants in which almost all initial conditions escape, with multiple small holes or a thin strip. We show that equal spacing of holes around the equator is an efficient means of ensuring almost complete escape and study the long time survival probability for small holes analytically and numerically. We find that it approaches a universal function of a single parameter, hole area multiplied by time.

2.
Chaos ; 30(12): 123105, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33380027

RESUMEN

We introduce the Iris billiard that consists of a point particle enclosed by a unit circle around a central scattering ellipse of fixed elongation (defined as the ratio of the semi-major to the semi-minor axes). When the ellipse degenerates to a circle, the system is integrable; otherwise, it displays mixed dynamics. Poincaré sections are presented for different elongations. Recurrence plots are then applied to the long-term chaotic dynamics of trajectories launched from the unstable period-2 orbit along the semi-major axis, i.e., one that initially alternately collides with the ellipse and the circle. We obtain numerical evidence of a set of critical elongations at which the system undergoes a transition to global chaos. The transition is characterized by an endogenous escape event, E, which is the first time a trajectory launched from the unstable period-2 orbit misses the ellipse. The angle of escape, θesc, and the distance of the closest approach, dmin, of the escape event are studied and are shown to be exquisitely sensitive to the elongation. The survival probability that E has not occurred after n collisions is shown to follow an exponential distribution.

3.
Phys Rev E ; 102(6-1): 062312, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466106

RESUMEN

In this paper, we study the connectivity of a one-dimensional soft random geometric graph (RGG). The graph is generated by placing points at random on a bounded line segment and connecting pairs of points with a probability that depends on the distance between them. We derive bounds on the probability that the graph is fully connected by analyzing key modes of disconnection. In particular, analytic expressions are given for the mean and variance of the number of isolated nodes, and a sharp threshold established for their occurrence. Bounds are also derived for uncrossed gaps, and it is shown analytically that uncrossed gaps have negligible probability in the scaling at which isolated nodes appear. This is in stark contrast to the hard RGG in which uncrossed gaps are the most important factor when considering network connectivity.

4.
Phys Rev E ; 100(3-1): 032315, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31640004

RESUMEN

In the classic model of first-passage percolation, for pairs of vertices separated by a Euclidean distance L, geodesics exhibit deviations from their mean length L that are of order L^{χ}, while the transversal fluctuations, known as wandering, grow as L^{ξ}. We find that when weighting edges directly with their Euclidean span in various spatial network models, we have two distinct classes defined by different exponents ξ=3/5 and χ=1/5, or ξ=7/10 and χ=2/5, depending only on coarse details of the specific connectivity laws used. Also, the travel-time fluctuations are Gaussian, rather than Tracy-Widom, which is rarely seen in first-passage models. The first class contains proximity graphs such as the hard and soft random geometric graph, and the k-nearest neighbor random geometric graphs, where via Monte Carlo simulations we find ξ=0.60±0.01 and χ=0.20±0.01, showing a theoretical minimal wandering. The second class contains graphs based on excluded regions such as ß skeletons and the Delaunay triangulation and are characterized by the values ξ=0.70±0.01 and χ=0.40±0.01, with a nearly theoretically maximal wandering exponent. We also show numerically that the so-called Kardar-Parisi-Zhang (KPZ) relation χ=2ξ-1 is satisfied for all these models. These results shed some light on the Euclidean first-passage process but also raise some theoretical questions about the scaling laws and the derivation of the exponent values and also whether a model can be constructed with maximal wandering, or non-Gaussian travel fluctuations, while embedded in space.

5.
Phys Rev E ; 97(4-1): 042319, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758699

RESUMEN

We analyze complexity in spatial network ensembles through the lens of graph entropy. Mathematically, we model a spatial network as a soft random geometric graph, i.e., a graph with two sources of randomness, namely nodes located randomly in space and links formed independently between pairs of nodes with probability given by a specified function (the "pair connection function") of their mutual distance. We consider the general case where randomness arises in node positions as well as pairwise connections (i.e., for a given pair distance, the corresponding edge state is a random variable). Classical random geometric graph and exponential graph models can be recovered in certain limits. We derive a simple bound for the entropy of a spatial network ensemble and calculate the conditional entropy of an ensemble given the node location distribution for hard and soft (probabilistic) pair connection functions. Under this formalism, we derive the connection function that yields maximum entropy under general constraints. Finally, we apply our analytical framework to study two practical examples: ad hoc wireless networks and the US flight network. Through the study of these examples, we illustrate that both exhibit properties that are indicative of nearly maximally entropic ensembles.

6.
Phys Rev E ; 97(3-1): 032205, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29776143

RESUMEN

We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

7.
J Stat Phys ; 172(3): 679-700, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30996473

RESUMEN

Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.

8.
Chaos ; 27(4): 043106, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28456178

RESUMEN

An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

9.
J Stat Phys ; 166(3): 714-749, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32269386

RESUMEN

The perceived randomness in the time evolution of "chaotic" dynamical systems can be characterized by universal probabilistic limit laws, which do not depend on the fine features of the individual system. One important example is the Poisson law for the times at which a particle with random initial data hits a small set. This was proved in various settings for dynamical systems with strong mixing properties. The key result of the present study is that, despite the absence of mixing, the hitting times of integrable flows also satisfy universal limit laws which are, however, not Poisson. We describe the limit distributions for "generic" integrable flows and a natural class of target sets, and illustrate our findings with two examples: the dynamics in central force fields and ellipse billiards. The convergence of the hitting time process follows from a new equidistribution theorem in the space of lattices, which is of independent interest. Its proof exploits Ratner's measure classification theorem for unipotent flows, and extends earlier work of Elkies and McMullen.

10.
Phys Rev E ; 93(3): 032313, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27078372

RESUMEN

In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H(r) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

11.
Chaos ; 25(10): 103107, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26520073

RESUMEN

The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

12.
Chaos ; 25(3): 033109, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25833431

RESUMEN

Some dynamical properties for an oval billiard with a scatterer in its interior are studied. The dynamics consists of a classical particle colliding between an inner circle and an external boundary given by an oval, elliptical, or circle shapes, exploring for the first time some natural generalizations. The billiard is indeed a generalization of the annular billiard, which is of strong interest for understanding marginally unstable periodic orbits and their role in the boundary between regular and chaotic regions in both classical and quantum (including experimental) systems. For the oval billiard, which has a mixed phase space, the presence of an obstacle is an interesting addition. We demonstrate, with details, how to obtain the equations of the mapping, and the changes in the phase space are discussed. We study the linear stability of some fixed points and show both analytically and numerically the occurrence of direct and inverse parabolic bifurcations. Lyapunov exponents and generalized bifurcation diagrams are obtained. Moreover, histograms of the number of successive iterations for orbits that stay in a cusp are studied. These histograms are shown to be scaling invariant when changing the radius of the scatterer, and they have a power law slope around -3. The results here can be generalized to other kinds of external boundaries.

13.
Artículo en Inglés | MEDLINE | ID: mdl-25353867

RESUMEN

We investigate the escape dynamics of the doubling map with a time-periodic hole. Ulam's method was used to calculate the escape rate as a function of the control parameters. We consider two cases, oscillating or breathing holes, where the sides of the hole are moving in or out of phase respectively. We find out that the escape rate is well described by the overlap of the hole with its images, for holes centered at periodic orbits.


Asunto(s)
Modelos Biológicos , Modelos Teóricos , Oscilometría/métodos , Simulación por Computador
14.
Chaos ; 24(4): 043130, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25554050

RESUMEN

We study the survival probability for long times in an open spherical billiard, extending previous work on the circular billiard. We provide details of calculations regarding two billiard configurations, specifically a sphere with a circular hole and a sphere with a square hole. The constant terms of the long-time survival probability expansions have been derived analytically. Terms that vanish in the long time limit are investigated analytically and numerically, leading to connections with the Riemann hypothesis.

15.
Artículo en Inglés | MEDLINE | ID: mdl-23848745

RESUMEN

We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 2): 036203, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23030993

RESUMEN

Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter ε and experiences a transition from integrable (ε=0) to nonintegrable (ε≠0). For small values of ε, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter ε increases and reaches a critical value εc, all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large ε, the survival probability decays exponentially when it turns into a slower decay as the control parameter ε is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.


Asunto(s)
Aceleración , Transferencia de Energía , Modelos Teóricos , Dinámicas no Lineales , Simulación por Computador
17.
Chaos ; 22(2): 023132, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22757539

RESUMEN

A particle driven by deterministic chaos and moving in a spatially extended environment can exhibit normal diffusion, with its mean square displacement growing proportional to the time. Here, we consider the dependence of the diffusion coefficient on the size and the position of areas of phase space linking spatial regions ('holes') in a class of simple one-dimensional, periodically lifted maps. The parameter dependent diffusion coefficient can be obtained analytically via a Taylor-Green-Kubo formula in terms of a functional recursion relation. We find that the diffusion coefficient varies non-monotonically with the size of a hole and its position, which implies that a diffusion coefficient can increase by making the hole smaller. We derive analytic formulas for small holes in terms of periodic orbits covered by the holes. The asymptotic regimes that we observe show deviations from the standard stochastic random walk approximation. The escape rate of the corresponding open system is also calculated. The resulting parameter dependencies are compared with the ones for the diffusion coefficient and explained in terms of periodic orbits.

18.
Chaos ; 22(2): 026113, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22757572

RESUMEN

A "drivebelt" stadium billiard with boundary consisting of circular arcs of differing radius connected by their common tangents shares many properties with the conventional "straight" stadium, including hyperbolicity and mixing, as well as intermittency due to marginally unstable periodic orbits (MUPOs). Interestingly, the roles of the straight and curved sides are reversed. Here, we discuss intermittent properties of the chaotic trajectories from the point of view of escape through a hole in the billiard, giving the exact leading order coefficient lim(t→∞)tP(t) of the survival probability P(t) which is algebraic for fixed hole size. However, in the natural scaling limit of small hole size inversely proportional to time, the decay remains exponential. The big distinction between the straight and drivebelt stadia is that in the drivebelt case, there are multiple families of MUPOs leading to qualitatively new effects. A further difference is that most marginal periodic orbits in this system are oblique to the boundary, thus permitting applications that utilise total internal reflection such as microlasers.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 1): 011138, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400543

RESUMEN

Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.


Asunto(s)
Coloides/química , Modelos Químicos , Modelos Moleculares , Modelos Estadísticos , Simulación por Computador
20.
Chaos ; 22(4): 043115, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23278050

RESUMEN

We investigate the dependence of the escape rate on the position of a hole placed in uniformly hyperbolic systems admitting a finite Markov partition. We derive an exact periodic orbit formula for finite size Markov holes which differs from other periodic expansions in the literature and can account for additional distortion to maps with piecewise constant expansion rate. Using asymptotic expansions in powers of hole size we show that for systems conjugate to the binary shift, the average escape rate is always larger than the expectation based on the hole size. Moreover, we show that in the small hole limit the difference between the two decays like a known constant times the square of the hole size. Finally, we relate this problem to the random choice of hole positions and we discuss possible extensions of our results to non-Markov holes as well as applications to leaky dynamical networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA