Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gen Relativ Gravit ; 55(6): 71, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283659

RESUMEN

Due to the growing capacity of gravitational-wave astronomy and black-hole imaging, we will soon be able to emphatically decide if astrophysical dark objects lurking in galactic centers are black holes. Sgr A*, one of the most prolific astronomical radio sources in our galaxy, is the focal point for tests of general relativity. Current mass and spin constraints predict that the central object of the Milky Way is supermassive and slowly rotating, thus can be conservatively modeled as a Schwarzschild black hole. Nevertheless, the well-established presence of accretion disks and astrophysical environments around supermassive compact objects can significantly deform their geometry and complicate their observational scientific yield. Here, we study extreme-mass-ratio binaries comprised of a minuscule secondary object inspiraling onto a supermassive Zipoy-Voorhees compact object; the simplest exact solution of general relativity that describes a static, spheroidal deformation of Schwarzschild spacetime. We examine geodesics of prolate and oblate deformations for generic orbits and reevaluate the non-integrability of Zipoy-Voorhees spacetime through the existence of resonant islands in the orbital phase space. By including radiation loss with post-Newtonian techniques, we evolve stellar-mass secondary objects around a supermassive Zipoy-Voorhees primary and find clear imprints of non-integrability in these systems. The peculiar structure of the primary, allows for, not only typical single crossings of transient resonant islands, that are well-known for non-Kerr objects, but also inspirals that transverse through several islands, in a brief period of time, that lead to multiple glitches in the gravitational-wave frequency evolution of the binary. The detectability of glitches with future spaceborne detectors can, therefore, narrow down the parameter space of exotic solutions that, otherwise, can cast identical shadows with black holes.

2.
Phys Rev Lett ; 129(24): 241103, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563262

RESUMEN

We establish a generic, fully relativistic formalism to study gravitational-wave emission by extreme-mass-ratio systems in spherically symmetric, nonvacuum black hole spacetimes. The potential applications to astrophysical setups range from black holes accreting baryonic matter to those within axionic clouds and dark matter environments, allowing one to assess the impact of the galactic potential, of accretion, gravitational drag, and halo feedback on the generation and propagation of gravitational waves. We apply our methods to a black hole within a halo of matter. We find fluid modes imparted to the gravitational-wave signal (a clear evidence of the black hole fundamental mode instability) and the tantalizing possibility to infer galactic properties from gravitational-wave measurements by sensitive, low-frequency detectors.

3.
Phys Rev Lett ; 128(11): 111103, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363003

RESUMEN

Recent work applying the notion of pseudospectrum to gravitational physics showed that the quasinormal mode spectrum of black holes is unstable, with the possible exception of the longest-lived (fundamental) mode. The fundamental mode dominates the expected signal in gravitational wave astronomy, and there is no reason why it should have privileged status. We compute the quasinormal mode spectrum of two model problems where the Schwarzschild potential is perturbed by a small "bump" consisting of either a Pöschl-Teller potential or a Gaussian, and we show that the fundamental mode is destabilized under generic perturbations. We present phase diagrams and study a simple double-barrier toy problem to clarify the conditions under which the spectral instability occurs.


Asunto(s)
Elefantes , Siphonaptera , Animales , Física
4.
Phys Rev Lett ; 126(14): 141102, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891456

RESUMEN

The Kerr geometry admits the Carter symmetry, which ensures that the geodesic equations are integrable. It is shown that gravitational waveforms associated with extreme-mass-ratio inspirals involving a nonintegrable compact object display "glitch" phenomena, where the frequencies of gravitational waves increase abruptly, when the orbit crosses certain spacetime regions known as Birkhoff islands. The presence or absence of these features in data from upcoming space-borne detectors will therefore allow not only for tests of general relativity but also of fundamental spacetime symmetries.

5.
Phys Rev Lett ; 120(3): 031103, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400502

RESUMEN

The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA