Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Indoor Air ; 25(2): 210-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24920242

RESUMEN

To investigate the impacts of an energy efficiency retrofit, indoor air quality and resident health were evaluated at a low-income senior housing apartment complex in Phoenix, Arizona, before and after a green energy building renovation. Indoor and outdoor air quality sampling was carried out simultaneously with a questionnaire to characterize personal habits and general health of residents. Measured indoor formaldehyde levels before the building retrofit routinely exceeded reference exposure limits, but in the long-term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long-term follow-up sampling within certain resident subpopulations (i.e. residents who report smoking and residents who had lived longer at the apartment complex).


Asunto(s)
Contaminación del Aire Interior/análisis , Conservación de los Recursos Energéticos , Formaldehído/análisis , Material Particulado/análisis , Anciano , Arquitectura y Construcción de Instituciones de Salud , Estudios de Seguimiento , Estado de Salud , Vivienda , Humanos , Fumar , Encuestas y Cuestionarios , Factores de Tiempo
2.
Indoor Air ; 17(4): 305-16, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17661927

RESUMEN

UNLABELLED: Ultraviolet photocatalytic oxidation (UVPCO) systems for removal of volatile organic compounds (VOCs) from air are being considered for use in office buildings. Here, we report an experimental evaluation of a UVPCO device with tungsten oxide modified titanium dioxide (TiO2) as the photocatalyst. The device was challenged with complex VOC mixtures. One mixture contained 27 VOCs characteristic of office buildings and another comprised 10 VOCs emitted by cleaning products, in both cases at realistic concentrations (low ppb range). VOC conversion efficiencies varied widely, usually exceeded 20%, and were as high as approximately 80% at about 0.03 s residence time. Conversion efficiency generally diminished with increased airflow rate, and followed the order: alcohols and glycol ethers > aldehydes, ketones, and terpene hydrocarbons > aromatic and alkane hydrocarbons > halogenated aliphatic hydrocarbons. Conversion efficiencies correlated with the Henry's law constant more closely than with other physicochemical parameters. An empirical model based on the Henry's law constant and the gas-phase reaction rate with hydroxyl radical provided reasonable estimates of pseudo-first order photocatalytic reaction rates. Formaldehyde, acetaldehyde, acetone, formic acid and acetic acid were produced by the device due to incomplete mineralization of common VOCs. Formaldehyde outlet/inlet concentration ratios were in the range 1.9-7.2. PRACTICAL IMPLICATIONS: Implementation of air cleaning technologies for both VOCs and particles in office buildings may improve indoor air quality, or enable indoor air quality levels to be maintained with reduced outdoor air supply and concomitant energy savings. One promising air cleaning technology is ultraviolet photocatalytic oxidation (UVPCO) air cleaning. For the prototype device evaluated here with realistic mixtures of VOCs, conversion efficiencies typically exceeded the minimum required to counteract predicted VOC concentration increases from a 50% reduction in ventilation. However, the device resulted in the net generation of formaldehyde and acetaldehyde from the partial oxidation of ubiquitous VOCs. Further development of the technology is needed to eliminate these hazardous air pollutants before such a UVPCO device can be deployed in buildings.


Asunto(s)
Contaminantes Atmosféricos/efectos de la radiación , Contaminación del Aire Interior/prevención & control , Filtración/métodos , Compuestos Orgánicos/aislamiento & purificación , Rayos Ultravioleta , Contaminantes Atmosféricos/química , Alcoholes/aislamiento & purificación , Aldehídos/aislamiento & purificación , Catálisis , Filtración/instrumentación , Éteres de Glicerilo/aislamiento & purificación , Hidrocarburos/aislamiento & purificación , Cetonas/aislamiento & purificación , Cinética , Oxidación-Reducción , Fotoquímica , Titanio/química , Volatilización
3.
Indoor Air ; 16(3): 179-91, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16683937

RESUMEN

UNLABELLED: Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. PRACTICAL IMPLICATIONS: While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter excessive exposures to these pollutants owing to cleaning product emissions. Mitigation options include screening of product ingredients and increased ventilation during and after cleaning. Certain practices, such as the use of some products in dilute solution vs. full-strength and the prompt removal of cleaning supplies from occupied spaces, can reduce emissions and exposures to 2-butoxyethanol and other volatile constituents. Also, it may be prudent to limit use of products containing ozone-reactive constituents when indoor ozone concentrations are elevated either because of high ambient ozone levels or because of the indoor use of ozone-generating equipment.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior , Éteres/análisis , Glicoles/análisis , Productos Domésticos , Terpenos/análisis , Detergentes , Humanos , Exposición por Inhalación/efectos adversos , Ozono/análisis , Tamaño de la Partícula , Volatilización
4.
Environ Sci Technol ; 35(14): 3019-24, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11478257

RESUMEN

Surfactant-enhanced pump-and-treat technologies increase the efficiency of nonaqueous-phase liquids (NAPLs) removal from soils. However, high concentrations of surfactants in groundwater impose severe limitations to water treatment. In this paper, we explore the applicability of ultrasonic irradiation as an alternative method for surfactant recovery and contaminant degradation. The combined effects of temperature, initial substrate concentration, and concentration of added surfactant (sodium dodecyl sulfate, SDS) were analyzed for the sonolysis of trichloroethylene (TCE) in batch experiments at an ultrasonic frequency of 500 kHz and 77 W/L applied power density. In the range of 5-30 degrees C, TCE sonolysis becomes faster at higher temperatures, both in the absence and in the presence of surfactant. This indicates that gas-phase pyrolysis prevails over other chemical reactions in the liquid phase. Inhibition of TCE sonolysis was observed in the presence of surfactant at all SDS concentrations. Changes in the initial TCE concentration (from 250 microM to 1.2 mM) showed no effect on the degradation rates in the presence of SDS. For surfactant levels below its critical micelle concentration (cmc), the inhibition of TCE sonolysis exhibited a highly nonlinear dependence with increasing SDS concentration. A correlation was observed in this range between the relative inhibition of sonolysis and the decreasing surface tension of the solutions. Above the cmc up to an SDS concentration of 5%, the reaction rate decreased less markedly. Micellar sequestration of the contaminant seems to be the main reason for this additional inhibition. Bubble growth prior to collapse may incorporate some of the TCE dissolved in the micelles through their adsorption in the expanding bubble walls, thus partially overcoming the scavenging effect due to micellar entrapment of the contaminant.


Asunto(s)
Contaminantes del Suelo/análisis , Solventes/química , Tensoactivos/química , Tricloroetileno/química , Ultrasonido , Micelas , Solubilidad , Contaminación del Agua/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA