Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(21): 4727-4737, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014219

RESUMEN

Reactive oxygen species (ROS) including the superoxide anion (O2•-) are typically studied in cell cultures using fluorescent dyes, which provide only discrete single-point measurements. These methods lack the capabilities for assessing O2•- kinetics and release in a quantitative manner over long monitoring times. Herein, we present the fabrication and application of an electrochemical biosensor that enables real-time continuous monitoring of O2•- release in cell cultures for extended periods (> 8 h) using an O2•- specific microelectrode. To achieve the sensitivity and selectivity requirements for cellular sensing, we developed a biohybrid system consisting of superoxide dismutase (SOD) and Ti3C2Tx MXenes, deposited on a gold microwire electrode (AuME) as O2•- specific materials with catalytic amplification through the synergistic action of the enzyme and the biomimetic MXenes-based structure. The biosensor demonstrated a sensitivity of 18.35 nA/µM with a linear range from 147 to 930 nM in a cell culture medium. To demonstrate its robustness and practicality, we applied the biosensor to monitor O2•- levels in human leukemia monocytic THP-1 cells upon stimulation with lipopolysaccharide (LPS). Using this strategy, we successfully monitored LPS-induced O2•- in THP-1 cells, as well as the quenching effect induced by the ROS scavenger N-acetyl-L-cysteine (NAC). The biosensor is generally useful for exploring the role of oxidative stress and longitudinally monitoring O2•- release in cell cultures, enabling studies of biochemical processes and associated oxidative stress mechanisms in cellular and other biological environments.


Asunto(s)
Técnicas Biosensibles , Superóxido Dismutasa , Superóxidos , Humanos , Superóxidos/metabolismo , Superóxidos/análisis , Técnicas Biosensibles/métodos , Superóxido Dismutasa/metabolismo , Células THP-1 , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Lipopolisacáridos/farmacología , Límite de Detección
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542284

RESUMEN

Climate change, particularly drought stress, significantly impacts plant growth and development, necessitating the development of resilient crops. This study investigated physiological and molecular modulations to drought stress between diploid parent species and their polyploid progeny in the Brassica species. While no significant phenotypic differences were observed among the six species, drought stress reduced growth parameters by 2.4% and increased oxidative stress markers by 1.4-fold. Drought also triggered the expression of genes related to stress responses and led to the accumulation of specific metabolites. We also conducted the first study of perfluorooctane sulfonic acid (PFOS) levels in leaves as a drought indicator. Lower levels of PFOS accumulation were linked to plants taking in less water under drought conditions. Both diploid and polyploid species responded to drought stress similarly, but there was a wide range of variation in their responses. In particular, responses were less variable in polyploid species than in diploid species. This suggests that their additional genomic components acquired through polyploidy may improve their flexibility to modulate stress responses. Despite the hybrid vigor common in polyploid species, Brassica polyploids demonstrated intermediate responses to drought stress. Overall, this study lays the framework for future omics-level research, including transcriptome and proteomic studies, to deepen our understanding of drought tolerance mechanisms in Brassica species.


Asunto(s)
Brassica , Brassica/genética , Estrés Fisiológico/genética , Sequías , Proteómica , Poliploidía
3.
Biosens Bioelectron ; 240: 115664, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37689016

RESUMEN

Oxidative stress and excessive accumulation of the superoxide (O2.-) anion are at the genesis of many pathological conditions and the onset of several diseases. The real time monitoring of (O2.-) release is important to assess the extent of oxidative stress in these conditions. Herein, we present the design, fabrication and characterization of a robust (O2.-) biosensor using a simple and straightforward procedure involving deposition of a uniform layer of L-Cysteine on a gold wire electrode to which Cytochrome C (Cyt c) was conjugated. The immobilized layers, studied using conductive Atomic Force Microscopy (c-AFM) revealed a stable and uniformly distributed redox protein on the gold surface, visualized as conductivity and surface topographical plots. The biosensor enabled detection of (O2.-) at an applied potential of 0.15 V with a sensitivity of 42.4 nA/µM and a detection limit of 2.4 nM. Utility of the biosensor was demonstrated in measurements of real time (O2.-) release in activated human blood platelets and skeletal rat limb muscles following ischemia reperfusion injury (IRI), confirming the biosensor's stability and robustness for measurements in complex biological systems. The results demonstrate the ability of these biosensors to monitor real time release of (O2.-) and estimate the extent of oxidative injury in models that could easily be translated to human pathologies.


Asunto(s)
Técnicas Biosensibles , Citocromos c , Humanos , Animales , Ratas , Superóxidos , Plaquetas , Oro , Músculo Esquelético
4.
ACS Meas Sci Au ; 2(3): 261-270, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36785866

RESUMEN

Neurotransmitters are involved in functions related to signaling, stress response, and pathological disorder development, and thus, their real-time monitoring at the site of production is important for observing the changes related to these disorders. Here, we demonstrate the first time-dependent quantification of dopamine in the brains of live zebrafish embryos using electrochemically pretreated carbon fiber microelectrodes (CFMEs) utilizing differential pulse voltammetry as the measurement technique. The pretreatment of the CFMEs in 0.1 M NaOH held at a potential of +1.0 V for 600 s improves the sensitivity toward dopamine and allows for reliable measurements in low ionic strength media. We demonstrate the measurement of extracellular dopamine concentrations in the zebrafish brain during late embryogenesis. The extracellular dopamine concentration in the tectum of zebrafish varies between 200 and 400 nM. The conventional pharmacological manipulation of neurotransmitter levels in the brain demonstrates the selective detection of dopamine at the implantation site. Exposure to the dopamine transporter inhibitor nomifensine induces an increase in extracellular dopamine from 201.9 (±34.9) nM to 352.2 (±20.0) nM, while exposure to the norepinephrine transporter inhibitor desipramine does not lead to a significant modulation of the measured signal. Furthermore, we report the quantitative assessment of the catecholamine stress response of embryos to tricaine, an anesthetic frequently used in zebrafish assays. Exposure to tricaine induces a short-lived increase in brain dopamine from 198.6 (±15.7) nM to a maximum of 278.8 (±14.0) nM. Thus, in vivo electrochemistry can detect real-time changes in zebrafish neurochemical physiology resulting from drug exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA