Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 1327, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666368

RESUMEN

Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

2.
Proc Natl Acad Sci U S A ; 113(40): 11127-11130, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647917

RESUMEN

We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth's lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth's mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D" layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth.

3.
Micron ; 90: 6-11, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27526326

RESUMEN

Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH2)3, thiophosphoryl triamide, SP(NH2)3, and silicon tetrachloride, SiCl4, at different temperatures and with varying amount of the starting material SiCl4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure.

4.
Microsc Microanal ; 20(3): 664-70, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24698285

RESUMEN

The recently discovered compound BeP2N4 that crystallizes in the phenakite-type structure has potential application as a high strength optoelectronic material. Therefore, it is important to analyze experimentally the electronic structure, which was done in the present work by monochromated electron energy-loss spectroscopy. The detection of Be is challenging due to its low atomic number and easy removal under electron bombardment. We were able to determine the bonding behavior and coordination of the individual atomic species including Be. This is evident from a good agreement between experimental electron energy-loss near-edge structures of the Be-K-, P-L2,3-, and N-K-edges and density functional theory calculations.

5.
J Org Chem ; 76(21): 8891-906, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21923124

RESUMEN

A room-temperature Ni-catalyzed cross-coupling of aryl, heteroaryl, and alkenyl electrophiles with aminoalkylzinc bromides, readily available from the corresponding aminoalkyl chlorides via Grignard reagents, was developed. The reaction allows a convenient one-step preparation of various aminoalkyl products, including piperidine and tropane derivatives. Such functionalized amine moieties are widely present in various biologically active molecules. Aryl, heteroaryl, and alkenyl iodides, bromides, chlorides and triflates are suitable electrophiles. A short total synthesis of two natural products, (±)-galipinine and (±)-cusparine, is also reported.


Asunto(s)
Alcaloides/síntesis química , Alquenos/química , Reactivos de Enlaces Cruzados/química , Compuestos Heterocíclicos/química , Hidrocarburos Halogenados/química , Indicadores y Reactivos/química , Níquel/química , Quinolinas/síntesis química , Alcaloides/química , Alquilación , Catálisis , Estructura Molecular , Quinolinas/química , Estereoisomerismo
6.
Chemistry ; 17(34): 9463-70, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21732429

RESUMEN

Cubic and circular hexagonal mesoporous carbon phases in the confined environment of the pores of anodic alumina membranes (AAM) were obtained by organic-organic self-assembly of a preformed oligomeric resol precursor and the triblock copolymer templates Pluronic F127 or P123, respectively. Casting and solvent evaporation were followed by self-assembly and the formation of a condensed wall material by thermopolymerization of the precursor oligomers, thus resulting in mesostructured phenolic resin phases. Subsequent thermal decomposition of the surfactant and carbonization were achieved through thermal treatment at temperatures up to 1000 °C under an inert atmosphere. The resulting hierarchical mesoporous composite materials were characterized by small-angle X-ray scattering and nitrogen-sorption measurements. The structural features were directly imaged in TEM cross-sections of the composite membranes. For both structures, the AAM pores were completely filled and no shrinkage was observed due to strong adhesion of the carbon-wall material to the AAM pore walls. As a consequence, the pore size of the mesophase system stays almost constant even after thermal treatment at 1000 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA