Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 659: 833-848, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38218087

RESUMEN

MOTIVATION: Surfactants like C8E8CH2COOH have such bulky headgroups that they cannot show the common sphere-to-cylinder transition, while surfactants like C18:1E2CH2COOH are mimicking lipids and form only bilayers. Mixing these two types of surfactants allows one to investigate the competition between intramicellar segregation leading to disc-like bicelles and the temperature dependent curvature constraints imposed by the mismatch between heads and tails. EXPERIMENTS: We establish phase diagrams as a function of temperature, surfactant mole ratio, and active matter content. We locate the isotropic liquid-isotropic liquid phase separation common to all nonionic surfactant systems, as well as nematic and lamellar phases. The stability and rheology of the nematic phase is investigated. Texture determination by polarizing microscopy allows us to distinguish between the different phases. Finally, SANS and SAXS give intermicellar distances as well as micellar sizes and shapes present for different compositions in the phase diagrams. FINDINGS: In a defined mole ratio between the two components, intramicellar segregation wins and a viscoelastic discotic nematic phase is present at low temperature. Partial intramicellar mixing upon heating leads to disc growth and eventually to a pseudo-lamellar phase. Further heating leads to complete random mixing and an isotropic phase, showing the common liquid-liquid miscibility gap. This uncommon phase sequence, bicelles, lamellar phase, micelles, and water-poor packed micelles, is due to temperature induced mixing combined with dehydration of the headgroups. This general molecular mechanism explains also why a metastable water-poor lamellar phase quenched by cooling can be easily and reproducibly transformed into a nematic phase by gentle hand shaking at room temperature, as well as the entrapment of air bubbles of any size without encapsulation by bilayers or polymers.

2.
J Colloid Interface Sci ; 630(Pt B): 762-775, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36356444

RESUMEN

MOTIVATION: The monoammonium salt of glycyrrhizic acid (AGA) is known to form fibrillar hydrogels and few studies regarding self-assembly of AGA have been published. Yet, the understanding of the fibrillar microstructures and the gelation remains vague. Thus, we attempt to achieve a deeper understanding of the microstructures and the gelation process of binary solutions of AGA in water. Further, we examine the effect of ethanol on the microstructures to pave the way for potential enhancement of drug loading in AGA hydrogels. EXPERIMENTS: A partial room temperature phase map of the ternary system AGA/ethanol/water was recorded. Small-angle X-ray and neutron scattering experiments were performed over wide ranges of compositions in both binary AGA/water and ternary AGA/ethanol/water mixtures to get access to the micro-structuring. FINDINGS: Binary aqueous solutions of AGA form birefringent gels consisting of a network of long helical fibrils. 'Infinitely' long negatively charged fibrils are in equilibrium with shorter fibrils (≈25 nm), both of which have a diameter of about 3 nm and are made of around 30 stacks of AGA per helical period (≈9nm), with each stack consisting of two AGA molecules. The interaxial distance (order of magnitude ≈20 nm) varies with an almost two-dimensional swelling law. Addition of ethanol reduces electrostatic repulsion and favors the formation of fibrillar end caps, reducing the average length of shorter fibrils, as well as the formation of small, swollen aggregates. While the gel network built by the long fibrils is resilient to a significant amount of ethanol, all fibrils are finally dissolved into small aggregates above a certain threshold concentration of ethanol (≈30 wt%).


Asunto(s)
Etanol , Hidrogeles , Hidrogeles/química , Etanol/química , Ácido Glicirrínico , Agua/química , Cloruro de Sodio
3.
J Colloid Interface Sci ; 621: 470-488, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35483179

RESUMEN

HYPOTHESIS: In a recent paper, we determined the phase behavior of an aqueous solution of octyl ether octaethylene oxide carboxylic acid ([H+][C8E8c-], Akypo™ LF2) and with partial replacement of H+ by Na+ and Ca2+. It was found that even the neat surfactants are liquid at room temperature and that they form only direct micelles for any aqueous content and over large temperature ranges. The aim of the present work was to find an explanation for the clouding in these systems as well as for the coacervation observed at very low surfactant content. We expected that very similar phase diagrams would be found for a full replacement of H+ by the mentioned ions. EXPERIMENTS: We established the respective phase diagrams of the above-mentioned salts in water and determined the structures of the occurring phases in detail with small-and wide-angle X-ray scattering, small-angle neutron scattering, dynamic light scattering, heat flux differential scanning calorimetry, as well as surface tension, ESI-MS, and NMR experiments. FINDINGS: To our surprise, we discovered a new type of nematic phase between an isotropic and a hexagonal phase. Based on the complete description of all occurring phases both in the acidic and the charged surfactant systems, we were able to design a coherent and unified picture of all these phases, including the auto-coacervation at low surfactant concentration, the non-conventional clouding at high temperatures, the unusual liquid crystalline phases in a small domain at high surfactant concentrations, and the Lß phase at low temperatures and at very low water content. It turned out that all phenomena are a consequence of the subtle interplay between a) the packing constraint due to the very large head-group, b) the relatively small hydrocarbon chain and c) the tunable electrostatic interactions versus entropy.


Asunto(s)
Micelas , Tensoactivos , Ácidos Carboxílicos , Óxido de Etileno , Iones , Tensoactivos/química , Agua/química
4.
Molecules ; 26(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279374

RESUMEN

Most of the commonly used Ionic Liquids (ILs) contain bulky organic cations with suitable anions. With our COMPLET (Concept of Melting Point Lowering due to Ethoxylation), we follow a different approach. We use simple, low-toxic, cheap, and commercially available anions of the type Cx(EO)yCH2COO- to liquefy presumably any simple metal ion, independently of its charge. In the simplest case, the cation can be sodium or lithium, but synthesis of Ionic Liquids is also possible with cations of higher valences such as transition or rare earth metals. Anions with longer alkyl chains are surface active and form surface active ionic liquids (SAILs), which combine properties of ionic and nonionic surfactants at room temperature. They show significant structuring even in their pure state, i.e., in the absence of water or any other added solvent. This approach offers new application domains that go far beyond the common real or hypothetical use of classical Ionic Liquids. Possible applications include the separation of rare earth metals, the use as interesting media for metal catalysis, or the synthesis of completely new materials (for example, in analogy to metal organic frameworks).

5.
J Colloid Interface Sci ; 590: 375-386, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556757

RESUMEN

HYPOTHESIS: The surfactant C8EO8CH2COOH (Akypo LF2) and its salts have a small hydrophobic and a significantly longer hydrophilic part. As a consequence, there must be a significant steric constraint, once these surfactant molecules form micelles. In addition, the partially charged headgroups should bring some additional fine-tuning via electrostatic interactions to this "essentially non-ionic" surfactant. EXPERIMENTS: Phase diagrams of binary mixtures of water and C8EO8CH2COOH are established over large concentration and temperature ranges, also at different pHs and in the presence of sodium and calcium ions. Surface tensions and osmotic pressures are measured to understand the systems. To evaluate the microstructures, also Dynamic Light Scattering and Small-Angle X-ray Scattering are performed. FINDINGS: Apart from the formation of coacervates at very low surfactant concentrations, spherical micelles persist over the whole concentration and temperature range and do not change in size and shape. At very high surfactant concentrations, above 60% by weight, where the headgroups are no longer fully hydrated, the standard core-shell structure of micelles vanishes and highly stabilized aggregates of 8-26 octyl chains are suspended in interdigitated polyoxyethylene layers and form an "osmotic brush". When the acid is partially transformed to a sodium salt, the repulsion between the micelles increases, whereas bridging between micelles prevails, when the counterions are calcium cations. Remarkably, the negative charges of the headgroups are randomly distributed in the hydrophilic ethylene oxide shell. Altogether, a phase diagram without lyotropic liquid crystalline phases and an extreme shift of the cloud-point in temperature and composition is found, similar to the phase diagram of C8EO8OH already known in literature. The phase properties can be explained by the curvature and packing constraints together with the Lindemann rule applied to short hydrocarbon chains.

6.
Org Electron ; 15(5): 997-1001, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24817837

RESUMEN

We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA