Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 33(38)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34198268

RESUMEN

To describe kinetic phenomena in disordered conductors, various acts of scattering of electrons can be often considered as independent, that is captured by the Boltzmann equation. However, in some regimes, especially, in a magnetic field, it becomes necessary to take into account the correlations between different scattering events of electrons on defects at different times in the past. Such memory effects can have a profound impact on the resistivity of 2D semiconductor systems, resulting in giant negative magnetoresistance and microwave-induced resistance oscillations phenomena. This work opens the discussion of the memory effects in 3D conducting systems featured by the presence of extended one-dimensional defects, such as screw dislocations or static charge stripes. We demonstrate that accounting for the memory effect, that is the capture of electrons on collisionless spiral trajectories winding around extended defects, leads to the strong negative magnetoresistance in case when the external magnetic field direction becomes parallel to the defects axis. This effect gives rise to a significant magnetoresistance anisotropy already for an isotropic Fermi surface and no spin-orbit effects. The proposed resistivity feature can be used to detect one-dimensional scattering defects in these systems.

2.
Nat Commun ; 12(1): 2758, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980841

RESUMEN

The topological Hall effect is used extensively to study chiral spin textures in various materials. However, the factors controlling its magnitude in technologically-relevant thin films remain uncertain. Using variable-temperature magnetotransport and real-space magnetic imaging in a series of Ir/Fe/Co/Pt heterostructures, here we report that the chiral spin fluctuations at the phase boundary between isolated skyrmions and a disordered skyrmion lattice result in a power-law enhancement of the topological Hall resistivity by up to three orders of magnitude. Our work reveals the dominant role of skyrmion stability and configuration in determining the magnitude of the topological Hall effect.

3.
J Phys Condens Matter ; 32(41): 415302, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32454477

RESUMEN

We discuss in detail the electron scattering pattern on skyrmion-like magnetic textures in two-dimensional geometry. The special attention is focused on analyzing the scattering asymmetry, which is a precursor of the topological Hall effect. We present analytical results valid in the limiting regimes of strong and weak coupling, we analyze analytically the conditions when the transverse response acquires a quantized character determined by the topological charge of a magnetic texture, we also derive the numerical scheme that gives access to the exact solution of the scattering problem. We describe how the electron scattering asymmetry is modified due to an additional short-range impurity located inside a magnetic skyrmion. Based on the numerical computations we investigate the properties of the asymmetric scattering for an arbitrary magnitude of the interaction strength and the topology of a magnetic texture, we also account for the presence or absence of a scalar impurity.

4.
Sci Rep ; 9(1): 10817, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346225

RESUMEN

In this work we manifest that an electrostatic disorder in conducting systems with broken time reversal symmetry universally leads to a chiral ordering of the electron gas giving rise to skyrmion-like textures in spatial distribution of the electron spin density. We describe a microscopic mechanism underlying the formation of the equilibrium chiral spin textures in two-dimensional systems with spin-orbit interaction and exchange spin splitting. We have obtained analytical expressions for spin-density response functions and have analyzed both local and non-local spin response to electrostatic perturbations for systems with parabolic-like and Dirac electron spectra. With the proposed theory we come up with a concept of controlling spin chirality by electrical means.

5.
Sci Rep ; 7(1): 17204, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222474

RESUMEN

We propose a new theory of the topological Hall effect (THE) in systems with non-collinear magnetization textures such as magnetic skyrmions. We solve the problem of electron scattering on a magnetic skyrmion exactly, for an arbitrary strength of exchange interaction and the skyrmion size. We report the existence of different regimes of THE and resolve the apparent contradiction between the adiabatic Berry phase theoretical approach and the perturbation theory for THE. We traced how the topological charge Hall effect transforms into the spin Hall effect upon varying the exchange interaction strength or the skyrmion size. This transformation has a nontrivial character: it is accompanied by an oscillating behavior of both charge and spin Hall currents. This hallmark of THE allows one to identify the chirality driven contribution to Hall response in the experiments.

6.
Phys Rev Lett ; 117(2): 027202, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27447521

RESUMEN

We present a theory of electron scattering on a magnetic Skyrmion for the case when the exchange interaction is moderate so that the adiabatic approximation and the Berry phase approach are not applicable. The theory explains the appearance of a topological Hall current in the systems with magnetic Skyrmions, the special importance of which is its applicability to dilute magnetic semiconductors with a weak exchange interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA