Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(2): 682-697, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322324

RESUMEN

Lymphatic metastasis is the main metastatic route for colorectal cancer, which increases the risk of cancer recurrence and distant metastasis. The properties of the lymph node metastatic colorectal cancer (LNM-CRC) cells are poorly understood, and effective therapies are still lacking. Here, we found that hypoxia-induced fibroblast activation protein alpha (FAPα) expression in LNM-CRC cells. Gain- or loss-function experiments demonstrated that FAPα enhanced tumor cell migration, invasion, epithelial-mesenchymal transition, stemness, and lymphangiogenesis via activation of the STAT3 pathway. In addition, FAPα in tumor cells induced extracellular matrix remodeling and established an immunosuppressive environment via recruiting regulatory T cells, to promote colorectal cancer lymph node metastasis (CRCLNM). Z-GP-DAVLBH, a FAPα-activated prodrug, inhibited CRCLNM by targeting FAPα-positive LNM-CRC cells. Our study highlights the role of FAPα in tumor cells in CRCLNM and provides a potential therapeutic target and promising strategy for CRCLNM.

2.
Adv Sci (Weinh) ; 10(30): e2302717, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37635201

RESUMEN

Hematogenous metastasis is the main approach for colorectal cancer liver metastasis (CRCLM). However, as the gatekeepers in the tumor vessels, the role of TPCs in hematogenous metastasis remains largely unknown, which may be attributed to the lack of specific biomarkers for TPC isolation. Here, microdissection combined with a pericyte medium-based approach is developed to obtain TPCs from CRC patients. Proteomic analysis reveals that TRP channel-associated factor 2 (TCAF2), a partner protein of the transient receptor potential cation channel subfamily M member 8 (TRPM8), is overexpressed in TPCs from patients with CRCLM. TCAF2 in TPCs is correlated with liver metastasis, short overall survival, and disease-free survival in CRC patients. Gain- and loss-of-function experiments validate that TCAF2 in TPCs promotes tumor cell motility, epithelial-mesenchymal transition (EMT), and CRCLM, which is attenuated in pericyte-conditional Tcaf2-knockout mice. Mechanistically, TCAF2 inhibits the expression and activity of TRPM8, leading to Wnt5a secretion in TPCs, which facilitates EMT via the activation of the STAT3 signaling pathway in tumor cells. Menthol, a TRPM8 agonist, significantly suppresses Wnt5a secretion in TPCs and CRCLM. This study reveals the previously unidentified pro-metastatic effects of TPCs from the perspective of cold-sensory receptors, providing a promising diagnostic biomarker and therapeutic target for CRCLM.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Canales Catiónicos TRPM , Ratones , Animales , Humanos , Pericitos/metabolismo , Proteómica , Sensación Térmica , Neoplasias Colorrectales/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Proteínas de la Membrana/metabolismo
3.
Inflammation ; 46(5): 1901-1916, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311931

RESUMEN

Kaempferol is a common flavonoid aglycone widely found in plants. It exhibits beneficial therapeutic effects in the treatment of arthritis. However, the effects of kaempferol on gouty arthritis (GA) have not been verified. This study aimed to explore the potential mechanisms by which kaempferol regulates GA by network pharmacology and experimental validation. Potential drug targets for GA were identified with a protein-protein interaction network. Then, we performed a KEGG pathway analysis to elucidate the major pathway involved in the kaempferol-mediated treatment of GA. In addition, the molecular docking was performed. A rat model of GA was constructed to verify the results of network pharmacology analysis and investigate the mechanism of kaempferol against GA. The network pharmacology study indicated that there were 275 common targets of kaempferol and GA treatment. Kaempferol exerted therapeutic effects on GA, in part, by regulating the IL-17, AGE-RAGE, p53, TNF, and FoxO signaling pathways. Molecular docking results showed that kaempferol stably docked with the core MMP9, ALB, CASP3, TNF, VEGFA, CCL2, CXCL8, AKT1, JUN, and INS. Experimental validation suggested that kaempferol eased MSU-induced mechanical allodynia, ankle edema, and inflammation. It significantly suppressed the expression of IL-1ß, IL-6, TNF-α, and TGF-ß1 and restored Th17/Treg imbalance in MSU-induced rats and IL-6-induced PBMCs. Kaempferol also affected RORγt and Foxp3 through IL-17 pathway. The present study clarifies the mechanism of kaempferol against GA and provides evidence to support its clinical use.


Asunto(s)
Artritis Gotosa , Medicamentos Herbarios Chinos , Animales , Ratas , Artritis Gotosa/inducido químicamente , Artritis Gotosa/tratamiento farmacológico , Linfocitos T Reguladores , Interleucina-17 , Interleucina-6 , Quempferoles/farmacología , Quempferoles/uso terapéutico , Simulación del Acoplamiento Molecular
4.
Free Radic Biol Med ; 204: 301-312, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37217090

RESUMEN

Colorectal cancer (CRC) is the third most common cause of cancer mortality worldwide. Approximately 40% of CRC patients are KRAS sequence variation, including KRAS G13D mutation (KRASG13D) CRC patients, accounting for approximately 8% of all KRAS mutations in CRC patients and showing little benefit from anti-EGFR therapy. Therefore, there is an urgent need for new and effective anticancer agents in patients with KRASG13D CRC. Here, we identified a natural product, erianin, that directly interacted with purified recombinant human KRASG13D with a Kd of 1.1163 µM, which also significantly improve the thermal stability of KRASG13D. The cell viability assay showed that KRASG13D cells were more sensitive to erianin than KRASWT or KRASG12V cells. In vitro, results showed that erianin suppressed the migration, invasion and epithelial-mesenchymal transition (EMT) of KRASG13D CRC cells. Furthermore, erianin induced ferroptosis, as evidenced by the accumulation of Fe2+ and reactive oxygen species (ROS), lipid peroxidation, and changes in the mitochondrial morphology of KRASG13D CRC cells. Interestingly, we also found that erianin-induced ferroptosis was accompanied by autophagy. Moreover, the occurrence of erianin-induced ferroptosis is reversed by autophagy inhibitors (NH4Cl and Bafilomycin A1) and ATG5 knockdown, suggesting that erianin-induced ferroptosis is autophagy-dependent. In addition, we evaluated the inhibition of tumor growth and metastasis by erianin in vivo using a subcutaneous tumor model and a spleen-liver metastasis model, respectively. Collectively, these data provide novel insights into the anticancer activity of erianin, which is valuable for the further discussion and investigation of the use of erianin in clinical anticancer chemotherapy for KRASG13D CRC.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Ferroptosis/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Autofagia
6.
J Clin Invest ; 132(19)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35951441

RESUMEN

Vessel co-option has been demonstrated to mediate colorectal cancer liver metastasis (CRCLM) resistance to antiangiogenic therapy. The current mechanisms underlying vessel co-option have mainly focused on "hijacker" tumor cells, whereas the function of the "hijackee" sinusoidal blood vessels has not been explored. Here, we found that the occurrence of vessel co-option in bevacizumab-resistant CRCLM xenografts was associated with increased expression of fibroblast activation protein α (FAPα) in the co-opted hepatic stellate cells (HSCs), which was dramatically attenuated in HSC-specific conditional Fap-knockout mice bearing CRCLM allografts. Mechanistically, bevacizumab treatment induced hypoxia to upregulate the expression of fibroblast growth factor-binding protein 1 (FGFBP1) in tumor cells. Gain- or loss-of-function experiments revealed that the bevacizumab-resistant tumor cell-derived FGFBP1 induced FAPα expression by enhancing the paracrine FGF2/FGFR1/ERK1/-2/EGR1 signaling pathway in HSCs. FAPα promoted CXCL5 secretion in HSCs, which activated CXCR2 to promote the epithelial-mesenchymal transition of tumor cells and the recruitment of myeloid-derived suppressor cells. These findings were further validated in tumor tissues derived from patients with CRCLM. Targeting FAPα+ HSCs effectively disrupted the co-opted sinusoidal blood vessels and overcame bevacizumab resistance. Our study highlights the role of FAPα+ HSCs in vessel co-option and provides an effective strategy to overcome the vessel co-option-mediated bevacizumab resistance.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Inhibidores de la Angiogénesis , Animales , Bevacizumab/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Endopeptidasas , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana , Ratones
7.
Mol Cancer ; 21(1): 52, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164788

RESUMEN

Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.


Asunto(s)
Inteligencia Artificial , Neoplasias , Adenosina/química , Descubrimiento de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA