Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Circ Cardiovasc Genet ; 7(4): 482-90, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25028483

RESUMEN

BACKGROUND: The KCNH2 gene encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier current in the heart. The relative expression of the full-length Kv11.1a isoform and the C-terminally truncated Kv11.1a-USO isoform plays an important role in regulation of channel function. The formation of C-terminal isoforms is determined by competition between the splicing and alternative polyadenylation of KCNH2 intron 9. It is not known whether changes in the relative expression of Kv11.1a and Kv11.1a-USO can cause long-QT syndrome. METHODS AND RESULTS: We identified a novel KCNH2 splice site mutation in a large family. The mutation, IVS9-2delA, is a deletion of the A in the AG dinucleotide of the 3' acceptor site of intron 9. We designed an intron-containing full-length KCNH2 gene construct to study the effects of the mutation on the relative expression of Kv11.1a and Kv11.1a-USO at the mRNA, protein, and functional levels. We found that this mutation disrupted normal splicing and resulted in exclusive polyadenylation of intron 9, leading to a switch from the functional Kv11.1a to the nonfunctional Kv11.1a-USO isoform in HEK293 cells and HL-1 cardiomyocytes. We also showed that IVS9-2delA caused isoform switch in the mutant allele of mRNA isolated from patient lymphocytes. CONCLUSIONS: Our findings indicate that the IVS9-2delA mutation causes a switch in the expression of the functional Kv11.1a isoform to the nonfunctional Kv11.1a-USO isoform. Kv11.1 isoform switch represents a novel mechanism in the pathogenesis of long-QT syndrome.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/patología , Línea Celular , Canal de Potasio ERG1 , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/metabolismo , Eliminación de Gen , Genotipo , Células HEK293 , Humanos , Intrones , Síndrome de QT Prolongado/genética , Técnicas de Placa-Clamp , Linaje , Fenotipo , Poliadenilación , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
J Biol Chem ; 285(42): 32233-41, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20693282

RESUMEN

The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel. Several hERG1 isoforms with different N- and C-terminal ends have been identified. The hERG1a, hERG1b, and hERG1-3.1 isoforms contain the full-length C terminus, whereas the hERG1(USO) isoforms, hERG1a(USO) and hERG1b(USO), lack most of the C-terminal domain and contain a unique C-terminal end. The mechanisms underlying the generation of hERG1(USO) isoforms are not understood. We show that hERG1 isoforms with different C-terminal ends are generated by alternative splicing and polyadenylation of hERG1 pre-mRNA. We identified an intrinsically weak, noncanonical poly(A) signal, AGUAAA, within intron 9 of hERG1 that modulates the expression of hERG1a and hERG1a(USO). Replacing AGUAAA with the strong, canonical poly(A) signal AAUAAA resulted in the predominant production of hERG1a(USO) and a marked decrease in hERG1 current. In contrast, eliminating the intron 9 poly(A) signal or increasing the strength of 5' splice site led to the predominant production of hERG1a and a significant increase in hERG1 current. We found significant variation in the relative abundance of hERG1 C-terminal isoforms in different human tissues. Taken together, these findings suggest that post-transcriptional regulation of hERG1 pre-mRNA may represent a novel mechanism to modulate the expression and function of hERG1 channels.


Asunto(s)
Empalme Alternativo , Canales de Potasio Éter-A-Go-Go/metabolismo , Isoformas de Proteínas/metabolismo , Precursores del ARN/metabolismo , Animales , Secuencia de Bases , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Regulación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Poliadenilación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Precursores del ARN/genética , Análisis de Secuencia de ADN , Distribución Tisular
3.
Proc Natl Acad Sci U S A ; 106(39): 16663-8, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19805354

RESUMEN

High consumption of cruciferous vegetables is associated with a reduced risk of prostate cancer in epidemiological studies. There is preliminary evidence that sulforaphane, derived from glucoraphanin found in a number of crucifers, may prevent and induce regression of prostate cancer and other malignancies in preclinical models, but the mechanisms that may explain these effects are not fully defined. Recent reports show that sulforaphane may impair prostate cancer growth through inhibition of histone deacetylases, which are up-regulated in cancer. Indeed, one of these enzymes, histone deacetylase 6 (HDAC6), influences the acetylation state of a key androgen receptor (AR) chaperone, HSP90. AR is the central signaling pathway in prostate cancer, and its inhibition is used for both prevention and treatment of this disease. However, it is not known whether the effects of sulforaphane involve suppression of AR. We hypothesized that sulforaphane treatment would lead to hyperacetylation of HSP90 and that this would destabilize AR and attenuate AR signaling. We confirmed this by demonstrating that sulforaphane enhances HSP90 acetylation, thereby inhibiting its association with AR. Moreover, AR is subsequently degraded in the proteasome, which leads to reduced AR target gene expression and reduced AR occupancy at its target genes. Finally, sulforaphane inhibits HDAC6 deacetylase activity, and the effects of sulforaphane on AR protein are abrogated by overexpression of HDAC6 and mimicked by HDAC6 siRNA. The inactivation by sulforaphane of HDAC6-mediated HSP90 deacetylation and consequent attenuation of AR signaling represents a newly defined mechanism that may help explain this agent's effects in prostate cancer.


Asunto(s)
Anticarcinógenos/farmacología , Histona Desacetilasas/metabolismo , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Tiocianatos/farmacología , Acetilación , Animales , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Isotiocianatos , Masculino , Modelos Biológicos , Neoplasias de la Próstata/genética , Sulfóxidos , Células Tumorales Cultivadas
4.
Hum Mol Genet ; 16(6): 640-50, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17309881

RESUMEN

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.


Asunto(s)
Encéfalo/metabolismo , Proteínas de la Membrana/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Fosfoproteínas/genética , Síndrome de Rett/genética , Animales , Estudios de Casos y Controles , Metilación de ADN , Femenino , Expresión Génica , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Regiones Promotoras Genéticas , Síndrome de Rett/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA