Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 949: 174648, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009146

RESUMEN

Radon-222, a radioactive noble gas with a half-life of 3.8 days produced by radium-226, is a health hazard in caves, but also a powerful tracer of atmospheric dynamics. Here we show how airborne radon-222 can be analysed in a cave with multiple openings, the Pech Merle Cave in South-West France. This two-level cave hosts prehistoric remains and Gravettian paintings in its lower level. Radon concentration, monitored at 15 points with one-hour sampling intervals for more than one year, including two points for more than three years, showed mean values from 1274 ± 11 to 5281 ± 20 Bq m-3, with transient values above 15,000 Bq m-3. Seasonal variations were observed, with a weak normal cycle (low in winter) at two points in the upper level and a pronounced inverse seasonal cycle (low in summer) at the other points in the cave. The radon-222 source (effective radium-226 concentration, ECRa) was measured in the laboratory for floor deposits, soil and rock samples. While ECRa values obtained for rocks and speleothems are smaller than 1 Bq kg-1, most ECRa values for soils are larger than 10 Bq kg-1. Quantitative modelling confirms that the floor fillings inside the cave are responsible for the stationary lower concentrations, while the higher concentrations observed in winter are explained by percolation of outside air, which collects radon-222 as it passes through the soil layers. In addition, Stored Available Radon (SAR) is sufficient to account for transient variations. While air currents occur when visitors enter the cave or when the cave is deliberately ventilated, the climatic processes revealed by their radon-222 signatures appear to be essentially natural. These processes, enhanced by global climate change, could cause or accelerate the deterioration of prehistoric paintings. Radon-222 source analysis using ECRa-based modelling and SAR appears essential for the preservation of underground heritage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA