Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 10(66): 40373-40383, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35520860

RESUMEN

We report a simple approach for tailoring the morphology of poly(vinylidene fluoride) (PVDF) membranes fabricated using a nonsolvent induced phase separation (NIPS) method that sustains both the hydrophilic and hydrophobic properties. Various membrane structures, i.e. skin layers and whole membrane structures as well, were obtained via an experimental method based on the obtained and computed ternary phase diagram. The nonsolvent interactions with polymer solution resulted in the different forms and properties of a surface layer of fabricated membranes that affected the overall transport of solvent and nonsolvent molecules inside and outside the bulk of the fabricated membranes. The resulting morphology and properties were confirmed using the 3D optical profiler, SEM, FT-IR and XRD methods. The effect of binary interaction parameters on the morphology of the fabricated membranes and on their separation performance was tested using water/oil mixture and gas separation. Both hydrophobic and hydrophilic properties of PVDF showed the excellent durable separation performance of the prepared membranes with 92% of oil separation and the maximum flux of 395 L h-1 m-2 along with 120 min of long-term stability. CO2 separation from H2, N2, CH4 and SF6 gases was performed to further support the effect of tuned PVDF membranes with different micro/nanostructured morphologies. The gas performance demonstrated ultrahigh permeability and a several-fold greater than the Knudsen separation factor. The results demonstrate a facile and inexpensive approach can be successfully applied for the tailoring of the PVDF membranes to predict and design the resulting membrane structure.

2.
Chem Commun (Camb) ; 52(80): 11991-11994, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27711282

RESUMEN

The development of novel diagnostic tools is a primary goal in bioanalytical chemistry. Here we report the synthesis of Tröger's base functionalized with amino- and coumarin-units designed as a monomeric unit for the development of an electrochemical cancer sensor. The synthesized receptor was deposited onto a conducting support using electrochemical polymerization, characterized spectroscopically and tested potentiometrically towards metabolites used as tumor markers of neuroblastoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA