Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels ; 12: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30996735

RESUMEN

BACKGROUND: Seasonal variation in microalgae production is a significant challenge to developing cost-competitive algae biofuels. Summer production can be three to five times greater than winter production, which could result in winter biomass shortages and summer surpluses at algae biorefineries. While the high water content (80%, wet basis) of harvested microalgae biomass makes drying an expensive approach to preservation, it is not an issue for ensiling. Ensiling relies on lactic acid fermentation to create anaerobic acidic conditions, which limits further microbial degradation. This study explores the feasibility of preserving microalgae biomass through wet anaerobic storage ensiling over 30 and 180 days of storage, and it presents a techno-economic analysis that considers potential cost implications. RESULTS: Harvested Scenedesmus acutus biomass untreated (anaerobic) or supplemented with 0.5% sulfuric acid underwent robust lactic acid fermentation (lactic acid content of 6-9%, dry basis) lowering the pH to 4.2. Dry matter losses after 30 days ranged from 10.8 to 15.5% depending on the strain and treatment without additional loss over the next 150 days. Long-term storage of microalgae biomass resulted in lactic acid concentrations that remained high (6%, dry basis) with a low pH (4.2-4.6). Detailed biochemical composition revealed that protein and lipid content remained unaffected by storage while carbohydrate content was reduced, with greater dry matter loss associated with greater reduction in carbohydrate content, primarily affecting glucan content. Techno-economic analysis comparing wet storage to drying and dry storage demonstrated the cost savings of this approach. The most realistic dry storage scenario assumes a contact drum dryer and aboveground carbon steel storage vessels, which translates to a minimum fuel selling price (MFSP) of $3.72/gallon gasoline equivalent (GGE), whereas the most realistic wet storage scenario, which includes belowground, covered wet storage pits translates to an MFSP of $3.40/GGE. CONCLUSIONS: Microalgae biomass can be effectively preserved through wet anaerobic storage, limiting dry matter loss to below 10% over 6 months with minimal degradation of carbohydrates and preservation of lipids and proteins. Techno-economic analysis indicates that wet storage can reduce overall biomass and fuel costs compared to drying and dry storage.

2.
Sci Data ; 5: 180267, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30480663

RESUMEN

National scale agronomic projections are an important input for assessing potential benefits of algae cultivation on the future of innovative agriculture. The Algae Testbed Public-Private Partnership was established with the goal of investigating open pond algae cultivation across different geographic, climatic, seasonal, and operational conditions while setting the benchmark for quality data collection, analysis, and dissemination. Identical algae cultivation systems and data analysis methodologies were established at testbed sites across the continental United States and Hawaii. Within this framework, the Unified Field Studies were designed for algae cultivation during all 4 seasons across the testbed network. With increasingly diverse algae research and development, and field deployment strategies, the challenges associated with data collection, quality, and dissemination increase dramatically. The dataset presented here is the complete, curated, climatic, cultivation, harvest, and biomass composition data for each season at each site. These data enable others to do in-depth cultivation, harvest, techno-economic, life cycle, resource, and predictive growth modelling analysis, as well as development of crop protection strategies throughout the algae cultivation industry.


Asunto(s)
Agricultura/métodos , Agricultura/normas , Chlorophyta , Asociación entre el Sector Público-Privado/normas , Cultivo Axénico/métodos , Biocombustibles/microbiología , Biomasa , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Fenómenos Microbiológicos , Asociación entre el Sector Público-Privado/tendencias , Estados Unidos
3.
Bioresour Technol ; 252: 28-36, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29306126

RESUMEN

Upgrading of bio-oil obtained from hydrothermal liquefaction (HTL) of algae is necessary for it to be used as a fuel. In this study, bio-oil obtained from HTL of Nannochloropsis sp. was upgraded using five different catalysts (Ni/C, ZSM-5, Ni/ZSM-5, Ru/C and Pt/C) at 300 °C and 350 °C. The upgraded bio-oil yields were higher at 300 °C; however, higher quality upgraded bio-oils were obtained at 350 °C. Ni/C gave the maximum upgraded bio-oil yield (61 wt%) at 350 °C. However, noble metal catalysts (Ru/C and Pt/C) gave the better upgraded bio-oils in terms of acidity, heating values, and nitrogen values. The higher heating value of the upgraded bio-oils ranged from 40 to 44 MJ/kg, and the nitrogen content decreased from 5.37 to 1.29 wt%. Most of the upgraded bio-oils (35-40 wt%) were in the diesel range. The major components present in the gaseous products were CH4, CO, CO2 and lower alkanes.


Asunto(s)
Biocombustibles , Aceites de Plantas , Catálisis , Polifenoles , Temperatura , Agua
4.
Bioresour Technol ; 243: 1112-1120, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28764118

RESUMEN

Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with a high lipid containing algae Nannochloropsis. The higher heating value of bio-oils ranged from 31 to 36MJ/kg and around 50% of the bio-oils was in the vacuum gas oil range while high lipid containing algae Nannochloropsis contained a significant portion (33-42%) in the diesel range. A predictive relationship between bio-oil yields and biochemical compositions was developed and showed a broad agreement between predictive and experimental yields. The aqueous phases obtained had high amount of TOC (12-43g/L), COD (35-160g/L), TN (1-18g/L), ammonium (0.34-12g/L) and phosphate (0.7-12g/L).


Asunto(s)
Biocombustibles , Chlorophyta , Biomasa , Cromatografía de Gases y Espectrometría de Masas , Aceites , Temperatura
5.
Anal Biochem ; 452: 86-95, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24556245

RESUMEN

Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently.


Asunto(s)
Biomasa , Cromatografía/métodos , Microalgas/química , Microalgas/metabolismo , Biocombustibles/microbiología , Microalgas/crecimiento & desarrollo , Especificidad de la Especie
6.
Anal Chem ; 84(4): 1879-87, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22242663

RESUMEN

Algal biomass compositional analysis data form the basis of a large number of techno-economic process analysis models that are used to investigate and compare different processes in algal biofuels production. However, the analytical methods used to generate these data are far from standardized. This work investigated the applicability of common methods for rapid chemical analysis of biomass samples with respect to accuracy and precision. This study measured lipids, protein, carbohydrates, ash, and moisture of a single algal biomass sample at 3 institutions by 8 independent researchers over 12 separate workdays. Results show statistically significant differences in the results from a given analytical method among laboratories but not between analysts at individual laboratories, suggesting consistent training is a critical issue for empirical analytical methods. Significantly different results from multiple lipid and protein measurements were found to be due to different measurement chemistries. We identified a set of compositional analysis procedures that are in best agreement with data obtained by more advanced analytical procedures. The methods described here and used for the round robin experiment do not require specialized instrumentation, and with detailed analytical documentation, the differences between laboratories can be markedly reduced.


Asunto(s)
Proteínas Algáceas/análisis , Biomasa , Carbohidratos/análisis , Laboratorios/normas , Lípidos/análisis , Microalgas/metabolismo , Almidón/análisis , Microalgas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA