Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 44(27): 4219-4237, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35666625

RESUMEN

Carbonaceous materials have been widely applied as adsorbents, but there are some factors that affect their efficiency. In this context, advances in nanotechnology provide new and more efficient methodologies for water treatment. This study evaluated the efficiency of a novel carbon-based adsorbent developed from Brazilian polyacrylonitrile textile fiber and functionalized with iron oxide magnetic nanoparticles for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from the aqueous medium. The synthesized adsorbent (ACF-Fe3O4) was characterized by FTIR, XRD, VSM, Zeta potential, SEM, EDX, and TEM. The characterization techniques showed that the adsorbent has peaks characteristic of its precursors and superparamagnetic characteristics, confirming the efficiency of the synthesis method. The adsorption tests evaluated the influence of adsorbent dosage, pH of the contaminant solution, contact time and temperature on the removal of 2,4-D. The experimental data were better adjusted by the pseudo-second order kinetic model and by the Langmuir isothermal model. The thermodynamic parameters revealed that the process is exothermic, spontaneous and thermodynamically favorable. Under the best experimental conditions, the maximum adsorption capacity obtained was 51.10 mg g-1 with an adsorbent concentration of 0.33 g L-1, natural pH of the solution, temperature of 288 K at the equilibrium time of six hours. Adsorbent reusage was studied in four desorption cycles. The adsorption mechanism can be explained through π-π bonds, hydrogen bonds and electrostatic interactions. The prepared material presented high-efficiency adsorption capacity of 2,4-D compared to other carbonaceous materials present in the literature, demonstrating its viability for the removal of this contaminant from the aqueous medium.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Termodinámica , Adsorción , Cinética , Fenómenos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Ácido 2,4-Diclorofenoxiacético , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 289: 133213, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34890614

RESUMEN

Currently, the COVID-19 pandemic has been increasing the consumption of some drugs, such as chloroquine (CQN) and dipyrone (DIP), which are continuously discharged into water resources through domestic sewage treatment systems. The presence of these drugs in water bodies is worrisome due to their high toxicity, which makes crucial their monitoring and removal, especially by means of advanced technologies. Given this scenario, a new adsorbent material was synthesized through the combination of babassu coconut activated carbon and graphene oxide (GAC-GO). This study was evaluated in batch adsorption processes, aiming at the treatment of water contaminated with CQN and DIP. Characterization analyzes using physicochemical and spectroscopic techniques indicated that the GAC-GO functionalization was successfully performed. The equilibrium time of the adsorption process was 18 and 12 h for CQN and DIP, respectively. Kinetic and isothermal data better fitted to pseudo-second-order and Langmuir models for both drugs. Thermodynamic parameters showed that the process is endothermic and the maximum adsorption capacities of CQN and DIP were 37.65 and 62.43 mg g-1, respectively, both at 318 K. The study of the effect of ionic strength, which simulates a real effluent, demonstrated that the synthesized adsorbent has potential application for the treatment of effluents. Furthermore, satisfactory removal rates were verified for the removal of other contaminants in both simple solutions and synthetic mixtures, evidencing the versatile profile of the adsorbent.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Grafito , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Humanos , Cinética , Pandemias , SARS-CoV-2 , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA