Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(9): e0238650, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32911487

RESUMEN

Any type of non-buoyant material in the ocean is transported horizontally by currents during its sinking journey. This lateral transport can be far from negligible for small sinking velocities. To estimate its magnitude and direction, the material is often modelled as a set of Lagrangian particles advected by current velocities that are obtained from Ocean General Circulation Models (OGCMs). State-of-the-art OGCMs are strongly eddying, similar to the real ocean, providing results with a spatial resolution on the order of 10 km on a daily frequency. While the importance of eddies in OGCMs is well-appreciated in the physical oceanographic community, other marine research communities may not. Further, many long term climate modelling simulations (e.g. in paleoclimate) rely on lower spatial resolution models that do not capture mesoscale features. To demonstrate how much the absence of mesoscale features in low-resolution models influences the Lagrangian particle transport, we simulate the transport of sinking Lagrangian particles using low- and high-resolution global OGCMs, and assess the lateral transport differences resulting from the difference in spatial and temporal model resolution. We find major differences between the transport in the non-eddying OGCM and in the eddying OGCM. Addition of stochastic noise to the particle trajectories in the non-eddying OGCM parameterises the effect of eddies well in some cases (e.g. in the North Pacific gyre). The effect of a coarser temporal resolution (once every 5 days versus monthly) is smaller compared to a coarser spatial resolution (0.1° versus 1° horizontally). We recommend to use sinking Lagrangian particles, representing e.g. marine snow, microplankton or sinking plastic, only with velocity fields from eddying Eulerian OGCMs, requiring high-resolution models in e.g. paleoceanographic studies. To increase the accessibility of our particle trace simulations, we launch planktondrift.science.uu.nl, an online tool to reconstruct the surface origin of sedimentary particles in a specific location.


Asunto(s)
Modelos Teóricos , Océanos y Mares , Movimientos del Agua , Simulación por Computador , Internacionalidad
2.
J Geophys Res Oceans ; 125(2): e2019JC015583, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32714728

RESUMEN

Floating plastic debris is an increasing source of pollution in the world's oceans. Numerical simulations using models of ocean currents give insight into the transport and distribution of microplastics in the oceans, but most simulations do not account for the oscillating flow caused by global barotropic tides. Here, we investigate the influence of barotropic tidal currents on the transport and accumulation of floating microplastics, by numerically simulating the advection of virtual plastic particles released all over the world's oceans and tracking these for 13 years. We use geostrophic and surface Ekman currents from GlobCurrent and the currents caused by the four main tidal constituents (M 2 , S 2 , K 1 , and O 1 ) from the FES model. We analyze the differences between the simulations with and without the barotropic tidal currents included, focusing on the open ocean. In each of the simulations, we see that microplastic accumulates in regions in the subtropical gyres, which is in agreement with observations. The formation and location of these accumulation regions remain unaffected by the barotropic tidal currents. However, there are a number of coastal regions where we see differences when the barotropic tidal currents are included. Due to uncertainties of the model in coastal regions, further investigation is required in order to draw conclusions in these areas. Our results suggest that, in the global open ocean, barotropic tidal currents have little impact on the transport and accumulation of floating microplastic and can thus be neglected in simulations aimed at studying microplastic transport in the open ocean.

3.
J Geophys Res Oceans ; 124(3): 1474-1490, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31218155

RESUMEN

Floating microplastic in the oceans is known to accumulate in the subtropical ocean gyres, but unclear is still what causes that accumulation. We investigate the role of various physical processes, such as surface Ekman and geostrophic currents, surface Stokes drift, and mesoscale eddy activity, on the global surface distribution of floating microplastic with Lagrangian particle tracking using GlobCurrent and WaveWatch III reanalysis products. Globally, the locations of microplastic accumulation (accumulation zones) are largely determined by the Ekman currents. Simulations of the North Pacific and North Atlantic show that the locations of the modeled accumulation zones using GlobCurrent Total (Ekman+Geostrophic) currents generally agree with observed microplastic distributions in the North Pacific and with the zonal distribution in the North Atlantic. Geostrophic currents and Stokes drift do not contribute to large-scale microplastic accumulation in the subtropics, but Stokes drift leads to increased microplastic transport to Arctic regions. Since the WaveWatch III Stokes drift and GlobCurrent Ekman current data sets are not independent, combining Stokes drift with the other current components leads to an overestimation of Stokes drift effects and there is therefore a need for independent measurements of the different ocean circulation components. We investigate whether windage would be appropriate as a proxy for Stokes drift but find discrepancies in the modeled direction and magnitude. In the North Pacific, we find that microplastic tends to accumulate in regions of relatively low eddy kinetic energy, indicating low mesoscale eddy activity, but we do not see similar trends in the North Atlantic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA