Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-33033414

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a promising low-cost approach to patterning structures with critical dimensions (CDs) which are smaller than can be achieved by traditional photolithography. The CD of contact holes can be reduced by assembling a cylindrical BCP inside a patterned template and utilizing the native size of the cylinder to dictate the reduced dimensions of the hole. This is a particularly promising application of the DSA technique, but in order for this technology to be realized there is a need for three-dimensional metrology of the internal structure of the patterned BCP in order to understand how template properties and processing conditions impact BCP assembly. This is a particularly challenging problem for traditional metrologies owing to the three-dimensional nature of the structure and the buried features. By utilizing small-angle X-ray scattering and changing the angle between the incident beam and sample we can reconstruct the three-dimensional shape profile of the empty template and the residual polymer after self-assembly and removal of one of the phases. A two-dimensional square grid pattern of the holes results in scattering in both in-plane directions, which is simplified by converting to a radial geometry. The shape is then determined by simulating the scattering from a model and iterating that model until the simulated and experimental scattering profiles show a satisfactory match. Samples with two different processing conditions are characterized in order to demonstrate the ability of the technique to evaluate critical features such as residual layer thickness and sidewall height. It was found that the samples had residual layer thicknesses of 15.9 ± 3.2 nm and 4.5 ± 2.2 nm, which were clearly distinguished between the two different DSA processes and in good agreement with focused ion beam scanning transmission electron microscopy (FIBSTEM) observations. The advantage of the X-ray measurements is that FIBSTEM characterizes around ten holes, while there are of the order of 800 000 holes illuminated by the X-ray beam.

2.
Nanoscale ; 10(23): 10900-10910, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29850715

RESUMEN

Advanced surface affinity control for grapho-epitaxy directed self-assembly (DSA) patterning is essential for providing reliable DSA-based solutions for the development of semiconductor patterning. Independent control of surface affinity between the bottom and the sidewalls of a topographical guiding structure was achieved by embedding an ultrathin layer in the guiding template stack. The implementation of an embedded layer with tunable surface properties for DSA grapho-epitaxy was evaluated and optimized on 300 mm wafers by critical dimension SEM characterization. It was demonstrated that a thin protective layer, placed between the hard mask guiding template and the embedded layer, allows the preservation of the surface properties of the embedded layer during guiding template etching. The DSA performances of this novel grapho-epitaxy integration, using a topographical template patterned with 193 nm immersion lithography, were evaluated by monitoring the success rate and the critical dimension uniformity of the shrunk contacts. FIB-STEM analyses were further carried out to analyze the residual polymer thickness on the resulting contacts. This new integration leads to the control of the polymer residual thickness (a few nanometers) and uniformity (inferior to 1 nm) at the bottom of the guiding template which will facilitate the subsequent DSA pattern transfer.

3.
ACS Nano ; 9(4): 3654-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789462

RESUMEN

An innovative method to fabricate large area (up to several squared millimeters) ultrathin (100 nm) monocrystalline silicon (Si) membranes is described. This process is based on the direct bonding of a silicon-on-insulator wafer with a preperforated silicon wafer. The stress generated by the thermal difference applied during the bonding process is exploited to produce buckling free silicon nanomembranes of large areas. The thermal differences required to achieve these membranes (≥1 mm(2)) are estimated by analytical calculations. An experimental study of the stress achievable by direct bonding through two specific surface preparations (hydrophobic or hydrophilic) is reported. Buckling free silicon nanomembranes secured on a 2 × 2 cm(2) frame with lateral dimensions up to 5 × 5 mm(2) are successfully fabricated using the optimized direct bonding process. The stress estimated by theoretical analysis is confirmed by Raman measurements, while the flatness of the nanomembranes is demonstrated by optical interferometry. The successful fabrications of high resolution (50 nm half pitch) tungsten gratings on the silicon nanomembranes and of focused ion beam milling nanostructures show the promising potential of the Si membranes for X-ray optics and for the emerging nanosensor market.


Asunto(s)
Fenómenos Mecánicos , Membranas Artificiales , Nanotecnología/métodos , Silicio/química , Temperatura , Impedancia Eléctrica , Interacciones Hidrofóbicas e Hidrofílicas , Fenómenos Ópticos
4.
Nanoscale Res Lett ; 6(1): 178, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21711712

RESUMEN

In this study, a wide range of a-SiNx:H films with an excess of silicon (20 to 50%) were prepared with an electron-cyclotron resonance plasma-enhanced chemical vapor deposition system under the flows of NH3 and SiH4. The silicon-rich a-SiNx:H films (SRSN) were sandwiched between a bottom thermal SiO2 and a top Si3N4 layer, and subsequently annealed within the temperature range of 500-1100°C in N2 to study the effect of annealing temperature on light-emitting and charge storage properties. A strong visible photoluminescence (PL) at room temperature has been observed for the as-deposited SRSN films as well as for films annealed up to 1100°C. The possible origins of the PL are briefly discussed. The authors have succeeded in the formation of amorphous Si quantum dots with an average size of about 3 to 3.6 nm by varying excess amount of Si and annealing temperature. Electrical properties have been investigated on Al/Si3N4/SRSN/SiO2/Si structures by capacitance-voltage and conductance-voltage analysis techniques. A significant memory window of 4.45 V was obtained at a low operating voltage of ± 8 V for the sample containing 25% excess silicon and annealed at 1000°C, indicating its utility in low-power memory devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA