RESUMEN
Hypertensive disorders of pregnancy complicate up to 10% of pregnancies worldwide, and they can be classified into (1) gestational hypertension, (2) preeclampsia, (3) chronic hypertension and (4) chronic hypertension with preeclampsia. Nitric oxide (NO) plays an essential role in the haemodynamic adaptations observed during pregnancy. It has been shown that the nitric oxide pathway's dysfunction during pregnancy is associated with placental- and vascular-related diseases such as hypertensive disorders of pregnancy. This review aims to present a brief definition of hypertensive disorders of pregnancy and physiological maternal cardiovascular adaptations during pregnancy. We also detail how NO signalling is altered in the (a) systemic vasculature, (b) uterine artery/spiral arteries, (c) implantation and (d) placenta of hypertensive disorders during pregnancy. We conclude by summarizing the anti-hypertensive therapy of hypertensive disorders of pregnancy as a specific management strategy.
Asunto(s)
Hipertensión Inducida en el Embarazo , Preeclampsia , Enfermedades Vasculares , Embarazo , Femenino , Humanos , Placenta/fisiología , Óxido NítricoRESUMEN
Piezo1 channel is a sensor for shear-stress in the vasculature. Piezo1 activation induces vasodilation, and its deficiency contributes to vascular disorders, such as hypertension. In this study, we aimed to determine whether Piezo1 channel has a functional role in the dilation of pudendal arteries and corpus cavernosum (CC). For this, male Wistar rats were used, and the relaxation of the pudendal artery and CC was obtained using the Piezo1 activator, Yoda1, in the presence and absence of Dooku (Yoda1 antagonist), GsMTx4 (non-selective mechanosensory channel inhibitor) and L-NAME (nitric oxide synthase inhibitor). In the CC, Yoda1 was also tested in the presence of indomethacin (non-selective COX inhibitor) and tetraethylammonium (TEA, non-selective potassium channel inhibitor). The expression of Piezo1 was confirmed by Western blotting. Our data show that Piezo1 activation leads to the relaxation of the pudendal artery and CC as the chemical activator of Piezo1, Yoda1, relaxed the pudendal artery (47%) and CC (41%). This response was impaired by L-NAME and abolished by Dooku and GsMTx4 in the pudendal artery only. Indomethacin and TEA did not affect the relaxation induced by Yoda1 in the CC. Limited tools to explore this channel prevent further investigation of its underlying mechanisms of action. In conclusion, our data demonstrate that Piezo1 is expressed and induced the relaxation of the pudendal artery and CC. Further studies are necessary to determine its role in penile erection and if erectile dysfunction is associated with Piezo1 deficiency.
RESUMEN
Morinda citrifolia L., also known as Noni, is widely used plant in folk medicine for various therapeutic purposes. However, reports on its effects during pregnancy are limited. Therefore, the objective of this study was to evaluate the effects of the M. citrifolia fruit extract on maternal performance and fetal development during pregnancy in rats. Pregnant Wistar rats (n = 12/group) were treated from gestational days (GD) 0-21 with water (control group) or the aqueous extract of M. citrifolia fruit at doses of 200, 400, or 750 mg/kg, orally. During pregnancy, clinical signs of toxicity, maternal weight, feed intake, and water consumption were noted. On GD 21, the rats were anesthetized and blood was collected to evaluate various biochemical parameters. During laparotomy, reproductive performance parameters were recorded, and fetuses were weighed and the anomalies analyzed. Reduced placental efficiency and fetal growth restriction were observed in the group treated with 400 mg/kg of M. citrifolia extract. The highest dose (750 mg/kg) augmented aspartate aminotransferase concentration and preimplantation losses, while reducing the number of live fetuses. Furthermore, both doses (400 and 750 mg/kg) of the plant extract caused fetal anomalies. In conclusion, consumption of high doses of the M. citrifolia aqueous extrac during pregnancy leads to maternal hepatotoxicity, anti-implantation effects, intrauterine growth restriction and fetal abnormalities, indicating that the plant fruit extract can be harmful to both the mother and the fetus.
Asunto(s)
Desarrollo Fetal , Morinda , Placenta , Extractos Vegetales , Animales , Femenino , Embarazo , Ratas , Desarrollo Fetal/efectos de los fármacos , Frutas , Morinda/toxicidad , Placenta/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Ratas WistarRESUMEN
Introduction: During pregnancy, arterial hypertension may impair placental function, which is critical for a healthy baby's growth. Important proteins during placentation are known to be targets for O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation), and abnormal protein O-GlcNAcylation has been linked to pathological conditions such as hypertension. However, it is unclear how protein O-GlcNAcylation affects placental function and fetal growth throughout pregnancy during hypertension. Methods: To investigate this question, female Wistar and spontaneously hypertensive rats (SHR) were mated with male Wistar rats, and after pregnancy confirmation by vaginal smear, rats were divided into groups of 14, 17, and 20 days of pregnancy (DOPs). On the 14th, 17th, and 20th DOP, rats were euthanized, fetal parameters were measured, and placentas were collected for western blot, immunohistochemical, and morphological analyses. Results: SHR presented a higher blood pressure than the Wistar rats (p=0.001). Across all DOPs, SHR showed reduced fetal weight and an increase in small-for-gestational-age fetuses. While near-term placentas were heavier in SHR (p=0.006), placental efficiency decreased at 17 (p=0.01) and 20 DOPs (p<0.0001) in this group. Morphological analysis revealed reduced junctional zone area and labyrinth vasculature changes on SHR placentas in all DOPs. O-GlcNAc protein expression was lower in placentas from SHR compared with Wistar at 14, 17, and 20 DOPs. Decreased expression of O-GlcNAc transferase (p=0.01) and O-GlcNAcase (p=0.002) enzymes was found at 14 DOPs in SHR. Immunohistochemistry showed reduced placental O-GlcNAc content in both the junctional zone and labyrinth of the placentas from SHR. Periodic acid-Schiff analysis showed decreased glycogen cell content in the placentas from SHR at 14, 17, and 20 DOPs. Moreover, glucose transporter 1 expression was decreased in placentas from SHR in all DOPs. Conclusions: These findings suggest that decreased protein O-GlcNAcylation caused by insufficient placental nutritional apport contributes to placental dysfunction during hypertensive pregnancy, impairing fetal growth.
Asunto(s)
Hipertensión , Placenta , Femenino , Embarazo , Ratas , Masculino , Animales , Placenta/metabolismo , Ratas Wistar , Ratas Endogámicas SHR , Placentación , NutrientesRESUMEN
Placentas from preeclamptic women display augmented tumor necrosis factor-alpha (TNF-α) levels with reduced expression of aquaporin 3 (AQP3). However, whether TNF-α modulates AQP3 expression remains to be elucidated. We hypothesize that elevated levels of TNF-α reduce AQP3 expression and negatively impact trophoblastic cell migration. Spontaneously hypertensive rats (SHRs) and Wistar rats (14-16 weeks) were divided into hypertensive and normotensive groups, respectively. Systolic blood pressure (SBP) was measured, and animals mated. In a third group, pregnant SHRs were treated with a TNF-α antagonist, etanercept (0.8 mg/kg, subcutaneously) on days 0, 6, 12, and 18 of pregnancy. Placentas were collected on the 20th day of pregnancy. Human placental explants, from normotensive pregnancies, were incubated with TNF-α (5, 10, and 20 ng/ml) and/or etanercept (1 µg/ml). Swan 71 cells were incubated with TNF-α (10 ng/ml) and/or etanercept (1 µg/ml) and subjected to the wound healing assay. AQP3 expression was assessed by Western blot and TNF-α levels by ELISA. SBP (mmHg) was elevated in the hypertensive group, and etanercept treatment reduced this parameter. Placental TNF-α levels (pg/ml) were higher in the hypertensive group. AQP3 expression was reduced in the hypertensive group, and etanercept treatment reversed this parameter. Explants submitted to TNF-α exposition displayed reduced expression of AQP3, and etanercept incubation reversed it. Trophoblastic cells incubated with TNF-α showed decreased cell migration and reduced AQP3 expression, and etanercept incubation ameliorated it. Altogether, these data demonstrate that high TNF-α levels negatively modulate AQP3 in placental tissue, impairing cell migration, and its relationship in a pregnancy affected by hypertension.
RESUMEN
The blood flow in the mesenteric region is crucial for nutrient absorption and immune response in the gastrointestinal tract. The presence of nematodes or their excreted/secreted products seems to provoke vascular dysfunction. However, it is unclear whether and how the intestinal nematodes with habitat in the intestinal niche could affect the mesenteric vascular resistance. In this study, male Wistar rats were infected with 2000 larvae of S. venezuelensis, and experiments were conducted at 0 (non-infected control), 10 or 30 days post-infection (DPI). Eggs were counted in rats' feces and adult worms recovered from the small intestine. Second- or third-order mesenteric arteries were extracted for concentration-response curves (CRC) to phenylephrine [PE; in the presence or absence of L-NAME or indomethacin] and acetylcholine. The number of eggs and adult worms were significantly higher in the 10 DPI group than those of 30 DPI group. Augmented PE-induced contraction was seen after 30 DPI compared to 10 DPI or control group. Hypercontractility to PE was partially prevented by L-NAME and wholly abolished by indomethacin incubation. Endothelium-dependent relaxation and endothelial nitric oxide synthase expression were unchanged among groups. COX-1 and COX-2 display a different pattern of expression over the infection. Hypercontractility observed in mesenteric resistance arteries in the resolution time of S. venezuelensis infection may represent systemic damage, which can generate significant cardiovascular and gastrointestinal repercussions.
Asunto(s)
Células Endoteliales/fisiología , Intestinos/irrigación sanguínea , Arterias Mesentéricas/fisiopatología , Strongyloides/fisiología , Estrongiloidiasis/fisiopatología , Animales , Heces/parasitología , Femenino , Gerbillinae , Masculino , Contracción Muscular , Enfermedades Desatendidas/fisiopatología , Recuento de Huevos de Parásitos , Distribución Aleatoria , Ratas , Ratas WistarRESUMEN
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
RESUMEN
Increased O-Linked ß-N-acetylglucosamine (O-GlcNAc) is observed in several pathologies, and unbalanced O-GlcNAcylation levels favor endothelial dysfunction. Whether augmented O-GlcNAc impacts the uterine artery (UA) function and how it affects the UA during pregnancy remains to be elucidated. We hypothesized that glucosamine treatment increases O-GlcNAc, leading to uterine artery dysfunction and this effect is prevented by pregnancy. Pregnant (P) and non-pregnant (NP) Wistar rats were treated with glucosamine (300 mg/kg; i.p.) for 21 days. Concentration response-curves (CRC) to acetylcholine (in the presence or absence of L-NAME) and sodium nitroprusside were performed in UAs. In NP rats, glucosamine treatment increased O-GlcNAc expression in UAs accompanied by decreased endothelium-dependent relaxation, which was abolished by L-NAME. Endothelial nitric oxide synthase (eNOS) activity and total Akt expression were decreased by glucosamine-treatment in NP rats. Further, NP rats treated with glucosamine displayed increased glycogen synthase kinase 3 beta (GSK3ß) activation and O-GlcNAc-transferase (OGT) expression in the UA. P rats treated with glucosamine displayed decreased O-GlcNAc in UAs and it was accompanied by improved relaxation to acetylcholine, whereas eNOS and GSK3ß activity and total Akt and OGT expression were unchanged. Sodium nitroprusside-induced relaxation was not changed in all groups, indicating that glucosamine treatment led to endothelial dysfunction in NP rats. The underlying mechanism is, at least in part, dependent on Akt/GSK3ß/OGT modulation. We speculate that during pregnancy, hormonal alterations play a protective role in preventing O-GlcNAcylation-induced endothelial dysfunction in the UAs.
Asunto(s)
Endotelio Vascular/efectos de los fármacos , Glucosamina/farmacología , Glucógeno Sintasa Quinasa 3 beta/fisiología , Arteria Uterina/efectos de los fármacos , Animales , Endotelio Vascular/fisiología , Femenino , N-Acetilglucosaminiltransferasas/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Arteria Uterina/fisiología , Vasodilatación/efectos de los fármacosRESUMEN
Successful placentation is a key event for fetal development, which commences following embryo implantation into the uterine wall, eliciting decidualization, placentation, and remodeling of blood vessels to provide physiological exchange between embryo-fetus and mother. Several signaling pathways are recruited to modulate such important processes and specific proteins that regulate placental function are a target for the glycosylation with O-linked ß-N-acetylglucosamine (O-GlcNAc), or O-GlcNAcylation. This is a reversible post-translational modification on nuclear and cytoplasmic proteins, mainly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation has been implicated as a modulator of proteins, both in physiological and pathological conditions and, more recently, O-GlcNAc has also been shown to be an important modulator in placental tissue. In this mini-review, the interplay between O-GlcNAcylation of proteins and placental function will be addressed, discussing the possible implications of this post-translational modification through placental development and pregnancy.
RESUMEN
AIMS: The interleukin-10 (IL-10) is an immuno-regulatory cytokine that plays a protective effect in the vasculature. IL-10 binding to its receptor, activating the IL-10/JAK1/STAT3 cascade to exert its effects. Therefore, STAT3 phosphorylation is essential for IL-10 actions. O-Glycosylation with linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification able to regulate many proteins by interfering with protein on a phosphorylation level. Our aim was to determine whether O-GlcNAc promotes the inhibition of IL-10-pathway (JAK1/STAT3/IL-10), inactivationg its action in the vasculature. MAIN METHODS: Mice (C57BL/6) aortic segments were incubated with vehicle or Thiamet G (0.1â¯mM, for 24â¯h) to increase global O-GlcNAc levels. Aortas from knockout mice for IL-10 were also used. Vascular reactivity and western blot tests were performed to evaluate protein expression. KEY FINDINGS: High levels of O-GlcNAc, induced by Thiamet G incubation, increased vascular expression of JAK1, but decreased expression and activity of STAT3. In addition, IL-10 levels were diminished in arteries treated with Thiamet G. Absence of IL-10, as well as augmented O-GlcNAcylation, increased vascular reactivity to constrictor stimuli, an effect that was abolished by ERK 1/2 inhibitor. High levels of O-GlcNAc and the absence of IL-10 also leads to increased vascular expression of ERK1/2. SIGNIFICANCE: Our data suggest that O-GlcNAc modification seems to (dys)regulate IL-10 signaling pathway and consequently, compromise the protective effect of this cytokine in vasculature. It is possible that there is a promising relationship in pathophysiological conditions where changes in O-GlcNAcylation and IL-10 levels are observed, such as hypertension and diabetes.
Asunto(s)
Acetilglucosamina/química , Interleucina-10/química , Interleucina-10/metabolismo , Procesamiento Proteico-Postraduccional , Vasoconstricción , Animales , Glicosilación , Transducción de SeñalRESUMEN
AIMS: Hyperglycemia increases glycosylation with O-linked N-acetyl-glucosamine (O-GlcNAc) contributing to placental dysfunction and fetal growth impairment. Our aim was to determine how O-GlcNAc levels are affected by hyperglycemia and the O-GlcNAc distribution in different placental regions. MAIN METHODS: Female Wistar rats were divided into the following groups: severe hyperglycemia (>300â¯mg/dL; nâ¯=â¯5); mild hyperglycemia (>140â¯mg/dL, at least than two time points during oral glucose tolerance test; nâ¯=â¯7) or normoglycemia (<120â¯mg/dL; nâ¯=â¯6). At 21â¯days of pregnancy, placental tissue was collected and processed for morphometry and immunohistochemistry analyses, or properly stored at -80⯰C for protein quantification by western blot. KEY FINDINGS: Placental index was increased only in severe hyperglycemic rats. Morphometric analysis showed increased junctional zone and decreased labyrinth region in placentas exclusively from the severe hyperglycemic group. Proteins targeted by O-GlcNAc were detected in all regions, with increased O-GlcNAc levels in the hyperglycemic group compared to control and mild hyperglycemic rats. Proteins in endothelial and trophoblast cells were the main target for O-GlcNAc. Whereas no changes in O-GlcNAc transferase (OGT) expression were detected, O-GlcNAcase (OGA) expression was reduced in placentas from the severe hyperglycemic group and augmented in placentas from the mild hyperglycemic group, compared with their respective control groups. SIGNIFICANCE: Placental O-GlcNAc overexpression may contribute to placental dysfunction, as indicated by the placental index. Additionally, morphometric alterations, occurring simultaneously with increased O-GlcNAc accumulation in the placental tissue may contribute to placental dysfunction during hyperglycemia.
Asunto(s)
Acetilglucosamina/metabolismo , Glucemia/metabolismo , Proteínas Gestacionales/metabolismo , Animales , Células Endoteliales/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Hiperglucemia/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Embarazo , Ratas , Ratas Wistar , Trofoblastos/metabolismoRESUMEN
Overproduction of superoxide anion (â¢O2-) and O-linked ß-N-acetylglucosamine (O-GlcNAc) modification in the vascular system are contributors to endothelial dysfunction. This study tested the hypothesis that increased levels of O-GlcNAc-modified proteins contribute to â¢O2- production via activation of NADPH oxidase, resulting in impaired vasodilation. Rat aortic segments and vascular smooth muscle cells (VSMCs) were incubated with vehicle (methanol) or O-(2-acetamido-2-deoxy-d-glucopyranosylidenamino) N-phenylcarbamate (PUGNAc) (100 µM). PUGNAc produced a time-dependent increase in O-GlcNAc levels in VSMC and decreased endothelium-dependent relaxation, which was prevented by apocynin and tiron, suggesting that â¢O2- contributes to endothelial dysfunction under augmented O-GlcNAc levels. Aortic segments incubated with PUGNAc also exhibited increased levels of reactive oxygen species, assessed by dihydroethidium fluorescence, and augmented â¢O2- production, determined by lucigenin-enhanced chemiluminescence. Additionally, PUGNAc treatment increased Nox-1 and Nox-4 protein expression in aortas and VSMCs. Translocation of the p47phox subunit from the cytosol to the membrane was greater in aortas incubated with PUGNAc. VSMCs displayed increased p22phox protein expression after PUGNAc incubation, suggesting that NADPH oxidase is activated in conditions where O-GlcNAc protein levels are increased. In conclusion, O-GlcNAc levels reduce endothelium-dependent relaxation by overproduction of â¢O2- via activation of NADPH oxidase. This may represent an additional mechanism by which augmented O-GlcNAc levels impair vascular function.
Asunto(s)
Acetilglucosamina/metabolismo , Aorta Torácica/fisiología , Superóxidos/metabolismo , Animales , Aorta Torácica/metabolismo , Endotelio Vascular/metabolismo , Activación Enzimática , Glicosilación , Masculino , NADPH Oxidasas/metabolismo , Ratas , Ratas Wistar , VasodilataciónRESUMEN
Inflammation as a result of NF-κB activation may result from the classical (canonical) pathway, with disconnection of the IκB inhibitor and subsequent nuclear translocation or, alternatively, by post-translational modifications of modulatory proteins or NF-κB subunits (non-canonical pathway). We hypothesized that hyperglycemia-induced increased glycosylation with O-linked N-acetylglucosamine (O-GlcNAc) of NF-κB in placental tissue leads to augmented production of pro-inflammatory cytokines, culminating in placental dysfunction and fetal restriction growth. Single injections of streptozotocin (40 mg/kg) or vehicle were used to induce hyperglycemia or normoglycemia, respectively, in female Wistar rats. After 3 days, rats were mated and pregnancy confirmed. Placental tissue was collected at 21 days of pregnancy. Placental expression of p65 subunit was similar between groups. However, nuclear translocation of p65 subunit, showing greater activation of NF-κB, was increased in the hyperglycemic group. Reduced expression of IκB and increased expression of phosphorylated IκBSer32 were observed in the placenta from hyperglycemic rats, demonstrating increased classical NF-κB activation. Augmented modification of O-GlcNAc-modified proteins was found in the placenta from hyperglycemic rats and p65 subunit was a key O-GlcNAc target, as demonstrated by immunoprecipitation. Tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) expressions were increased in the placenta from hyperglycemic rats. Furthermore, placental weight was increased, whereas fetal weight was decreased under hyperglycemic conditions. TNF-α and IL-6 demonstrated positive correlations with placental weight and negative correlations with fetal weight and placental efficiency. Therefore, under hyperglycemic conditions, a modulatory role of O-GlcNAc in NF-κB activity was demonstrated in the placenta, contributing to fetal and placental dysfunction due to inflammatory cytokine exacerbation.
Asunto(s)
Acetilglucosamina/metabolismo , Citocinas/metabolismo , Hiperglucemia/metabolismo , FN-kappa B/metabolismo , Placenta/metabolismo , Animales , Femenino , Retardo del Crecimiento Fetal/etiología , Placenta/fisiopatología , Embarazo , Complicaciones del Embarazo , Procesamiento Proteico-Postraduccional , RatasRESUMEN
We hypothesized that SIRS/endotoxemia-associated hyporesponsiveness to vasoconstrictors is mediated by smaller increases in intracellular Ca(2+) levels due to reduced signaling via the STIM/Orai. Male Wistar rats were injected either with saline or bacterial LPS (i.p.; 10 mg/kg), and experiments were performed 24 h later. LPS-injected rats exhibited decreased systolic blood pressure, increased heart rate, neutrophils' migration into the peritoneal cavity, and elevated alanine aminotransferase levels. Additionally, second-order mesenteric arteries from endotoxemic rats displayed hyporeactivity to contractile agents such as phenylephrine and potassium chloride; decreased contractile responses to Ca(2+); reduced contraction during Ca(2+) loading; and smaller intracellular Ca(2+) stores. Decreased Orai1, but not STIM1, expression was found in resistance mesenteric arteries from LPS-treated rats. Additionally, cultured vascular smooth muscle cell (VSMC) treated with LPS resulted in increased TLR-4 expression, but Myd-88 and STIM-1 expression were not changed. Our data suggest that in endotoxemia, Ca(2+) homeostasis is disrupted in VSMC, with decreased Ca(2+) influx, smaller concentrations of Ca(2+) in the sarcoplasmic reticulum, and decreased activation of Orai1. Abnormal Ca(2+) handling contributes to LPS-associated vascular hyporeactivity.