Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960927

RESUMEN

In this work, the use of nanostructured conducting polymer deposits on energy-storing devices is described. The cathode and the anode are electrochemically modified with nanowires of polypyrrole and poly(3,4-ethylenedioxythiophene), respectively, prepared after the use of a mesoporous silica template. The effect of aqueous or ionic liquid medium is assayed during battery characterization studies. The nanostructured device greatly surpasses the performance of the bulk configuration in terms of specific capacity, energy, and power. Moreover, compared with devices found in the literature with similar designs, the nanostructured device prepared here shows better battery characteristics, including cyclability. Finally, considering the semi-conducting properties of the components, the device was adapted to the design of a solar-rechargeable device by the inclusion of a titanium oxide layer and cis-bis(isothiocyanate)-bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) dye. The device proved that the nanostructured design is also appropriate for the implementation of solar-rechargeable battery, although its performance still requires further optimization.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406778

RESUMEN

In this work, nanostructured TiO2 and poly-3,4-ethylenedioxythiophene (PEDOT) layers were electrochemically prepared over transparent electrodes. Morphological characterization evidenced the presence of nanostructures as planed with 50-nm-wide TiO2 rod formations followed by 30-nm-wide PEDOT wires. Different characterizations were made to the deposits, establishing their composition and optic properties of the deposits. Finally, photovoltaic cells were prepared using this modified electrode, proving that the presence of PEDOT nanowires in the cell achieves almost double the efficiency of its bulk analogue.

3.
J Mol Model ; 25(3): 81, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30815730

RESUMEN

Studying the electrochemical characteristics is an important step for determining interactions between molecules and the chemical environment. Moreover, the electrochemical evaluation of dyes is highly needed to establish the behavior of electro-active chemical species inside dye-sensitized solar cells (DSSCs). Four compounds, M8-1, M8-2, M8-O1, and M8-O2 (with a common organic structure (E)-2-cyano-3-(5-((E)-2-(9,9-diethyl-7-(phenylamino)-9H-fluoren-2-yl)vinyl)thiophen-2-yl)acrylic acid), are studied in two solvents, tetrahydrofuran (THF) and dimethylsulfoxide (DMSO). Among the studied compounds, M8-1 has highlighted characteristics compared with the others: its ground and excited states oxidation potential are the highest (1.14 and -1.22 V, respectively). Also, it shows the lowest energy gap between the excited state oxidation potential and the TiO2 conduction band. Relating to the substituent effect, the shorter the length, the higher the energetic difference in the electronic transition (M8-1 and 2). Comparing characteristics through quantum chemistry, the values obtained in DMSO are the most predictable. The injection energies signal that M8-1 is the best injector. The performances in solar cells are measured in three TiO2 materials: Degussa (D-TiO2), active opaque (A-TiO2), and transparent (T-TiO2). The IPCE results show the A > T > D average tendency, and the family of substituted alkyl has higher values than the alcoxyl one. Furthermore, in the first family the methyl substituent has a higher value than the ethyl one. M8-1 has the highest IPCE value, on average. In terms of efficiency, the alkyl substituted family again has higher values than the alcoxyl family. On average, the methyl substituent has a higher value than the ethyl one in both families. M8-1 has the highest efficiency value.

4.
J Mol Model ; 17(1): 81-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20376512

RESUMEN

In the present work a series of ß-substituted thiophenes have been synthesized and their electrochemical behavior studied. The products obtained by electro-oxidation are highly dependent on the substituent, affording sometimes conducting polymers, insulating layers or soluble species. This behavior has been ascribed to specific electronic and/or steric factors. Theoretical calculations at the density functional theory level confirm the experimental findings and assess the use of reactivity descriptors for modeling complex chemical systems with specific polymerization patterns. In particular, the analysis of the polymerization sites of terthiophene derivatives using the dual descriptor for chemical reactivity and selectivity allows one to predict the specific sites able for reaction and explains correctly the observed polymerization pattern.


Asunto(s)
Electricidad , Modelos Químicos , Tiofenos/química , Procesos Fotoquímicos , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA