Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 14(5): e0138623, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37642412

RESUMEN

IMPORTANCE: Pathogen infections require the production of effectors that enable host colonization. Effectors have diverse functions and are only expressed at certain stages of the infection cycle. Thus, effector genes are tightly regulated by several mechanisms, including chromatin remodeling. Here, we investigate the role of histone acetylation in effector gene activation in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that lysine acetyltransferases (KATs) are essential for the spatiotemporal regulation of effector genes. We show that the KAT Sas3 is involved in leaf symptom development and pycnidia formation. Importantly, our results indicate that Sas3 controls histone acetylation of effector loci and is a regulator of effector gene activation during stomatal penetration. Overall, our work demonstrates the key role of histone acetylation in regulating gene expression associated with plant infection.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Activación Transcripcional , Acetilación , Enfermedades de las Plantas/microbiología
2.
Plant Cell Environ ; 46(5): 1427-1441, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36575647

RESUMEN

Knowledge concerning the integration of genetic pathways mediating the responses to environmental cues controlling flowering initiation in crops is scarce. Here, we reveal the diversity in oilseed rape (OSR) flowering response to high ambient temperature. Using a set of different spring OSR varieties, we found a consistent flowering delay at elevated temperatures. Remarkably, one of the varieties assayed exhibited the opposite behaviour. Several FT-like paralogs are plausible candidates to be part of the florigen in OSR. We revealed that BnaFTA2 plays a major role in temperature-dependent flowering initiation. Analysis of the H2A.Z histone variant occupancy at this locus in different Brassica napus varieties produced contrasting results, suggesting the involvement of additional molecular mechanisms in BnaFTA2 repression at high ambient temperature. Moreover, BnARP6 RNAi plants showed little accumulation of H2A.Z at high temperature while maintaining temperature sensitivity and delayed flowering. Furthermore, we found that H3K4me3 present in BnaFTA2 under inductive flowering conditions is reduced at high temperature, suggesting a role for this hallmark of transcriptionally active chromatin in the OSR flowering response to warming. Our work emphasises the plasticity of flowering responses in B. napus and offers venues to optimise this process in crop species grown under suboptimal environmental conditions.


Asunto(s)
Brassica napus , Brassica napus/genética , Temperatura , Histonas , Reproducción
3.
Front Plant Sci ; 13: 983976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061763

RESUMEN

One of the greatest threats to wild strawberries (Fragaria vesca Mara des Bois) after harvest is the highly perishability at ambient temperature. Breeders have successfully met the quality demands of consumers, but the prevention of waste after harvest in fleshy fruits is still pending. Most of the waste is due to the accelerated progress of senescence-like process after harvest linked to a rapid loss of water and firmness at ambient temperature. The storage life of strawberries increases at low temperature, but their quality is limited by the loss of cell structure. The application of high CO2 concentrations increased firmness during cold storage. However, the key genes related to resistance to softening and cell wall disassembly following transference from cold storage at 20°C remain unclear. Therefore, we performed RNA-seq analysis, constructing a weighted gene co-expression network analysis (WGCNA) to identify which molecular determinants play a role in cell wall integrity, using strawberries with contrasting storage conditions, CO2-cold stored (CCS), air-cold stored (ACS), non-cold stored (NCS) kept at ambient temperature, and intact fruit at harvest (AH). The hub genes associated with the cell wall structural architecture of firmer CO2-treated strawberries revealed xyloglucans stabilization attributed mainly to a down-regulation of Csl E1, XTH 15, Exp-like B1 and the maintenance of expression levels of nucleotide sugars transferases such as GMP and FUT as well as improved lamella integrity linked to a down-regulation of RG-lyase, PL-like and PME. The preservation of cell wall elasticity together with the up-regulation of LEA, EXPA4, and MATE, required to maintain cell turgor, is the mechanisms controlled by high CO2. In stressed air-cold stored strawberries, in addition to an acute softening, there is a preferential transcript accumulation of genes involved in lignin and raffinose pathways. Non-cold stored strawberries kept at 20°C after harvest are characterized by an enrichment in genes mainly involved in oxidative stress and up-expression of genes involved in jasmonate biosynthesis. The present results on transcriptomic analysis of CO2-treated strawberries with enhanced resistance to softening and oxidative stress at consumption will help to improve breeding strategies of both wild and cultivated strawberries.

4.
Plant J ; 100(2): 343-356, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257648

RESUMEN

Flowering time is a relevant agronomic trait because is crucial for the optimal formation of seeds and fruits. The genetic pathways controlling this developmental phase transition have been studied extensively in Arabidopsis thaliana. These pathways converge in a small number of genes including FT, the so-called florigen, which integrates environmental cues like ambient temperature. Nevertheless, detailed and functional studies about flowering time in Brassica crops are scarce. Here we study the role of the FT Brassica rapa homologues and the effect of high ambient temperature on flowering time in this crop. Phenotypic characterization and gene-expression analyses suggest that BraA.FT.a (BraA02g016700.3C) is decisive for initiating floral transition; consequently, braA.ft.a loss-of-function and hypomorphic mutations result in late flowering phenotypes. We also show that high ambient temperature delays B. rapa floral transition by reducing BraA.FT.a expression. Strikingly, these expression changes are associated with increased histone H2A.Z levels and less accessible chromatin configuration of the BraA.FT.a locus at high ambient temperature. Interestingly, increased H2A.Z levels at high ambient temperature were also observed for other B. rapa temperature-responsive genes. Previous reports delimited that Arabidopsis flowers earlier at high ambient temperature due to reduced H2A.Z incorporation in the FT locus. Our data reveal a conserved chromatin-mediated mechanism in B. rapa and Arabidopsis in which the incorporation of H2A.Z at FT chromatin in response to warm ambient temperature results in different flowering time responses. This work will help to develop improved Brassica crop varieties with flowering time requirements to cope with global warming. OPEN RESEARCH BADGES: This article has earned an Open Materials Badge for making publicly available the components of the research methodology needed to reproduce the reported procedure and analysis. Methods are available at protocols.iodx.doi.org/10.17504/protocols.io.zmff43n.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Brassica rapa/metabolismo , Flores/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Temperatura
5.
New Phytol ; 217(2): 813-827, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29105090

RESUMEN

Root knot nematodes (RKNs) penetrate into the root vascular cylinder, triggering morphogenetic changes to induce galls, de novo formed 'pseudo-organs' containing several giant cells (GCs). Distinctive gene repression events observed in early gall/GCs development are thought to be mediated by post-transcriptional silencing via microRNAs (miRNAs), a process that is far from being fully characterized. Arabidopsis thaliana backgrounds with altered activities based on target 35S::MIMICRY172 (MIM172), 35S::TARGET OF EARLY ACTIVATION TAGGED 1 (TOE1)-miR172-resistant (35S::TOE1R ) and mutant (flowering locus T-10 (ft-10)) lines were used for functional analysis of nematode infective and reproductive parameters. The GUS-reporter lines, MIR172A-E::GUS, treated with auxin (IAA) and an auxin-inhibitor (a-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA)), together with the MIR172C AuxRE::GUS line with two mutated auxin responsive elements (AuxREs), were assayed for nematode-dependent gene expression. Arabidopsis thaliana backgrounds with altered expression of miRNA172, TOE1 or FT showed lower susceptibility to the RKNs and smaller galls and GCs. MIR172C-D::GUS showed restricted promoter activity in galls/GCs that was regulated by auxins through auxin-responsive factors. IAA induced their activity in galls while PEO-IAA treatment and mutations in AuxRe motifs abolished it. The results showed that the regulatory module miRNA172/TOE1/FT plays an important role in correct GCs and gall development, where miRNA172 is modulated by auxins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/parasitología , Conducta Alimentaria , Redes Reguladoras de Genes , MicroARNs/metabolismo , Tylenchoidea/fisiología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Productos Agrícolas/genética , Productos Agrícolas/parasitología , Progresión de la Enfermedad , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Células Gigantes/metabolismo , Células Gigantes/parasitología , Glucuronidasa/metabolismo , Ácidos Indolacéticos/farmacología , MicroARNs/genética , Modelos Biológicos , Enfermedades de las Plantas/parasitología , Tumores de Planta/parasitología , Regiones Promotoras Genéticas/genética , Tylenchoidea/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
6.
Plant Physiol ; 173(3): 1735-1749, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28153919

RESUMEN

Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis (Arabidopsis thaliana). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ADN Polimerasa II/genética , Replicación del ADN , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , ADN Polimerasa II/metabolismo , ADN de Plantas/genética , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Hidroxiurea/farmacología , Microscopía Fluorescente , Modelos Genéticos , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Plantas Modificadas Genéticamente , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Nucleic Acids Res ; 44(15): 7251-66, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27193996

RESUMEN

Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/enzimología , Ciclo Celular/fisiología , Daño del ADN , ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , ADN Polimerasa II/genética , Proteínas de Unión al ADN/genética
8.
Nucleic Acids Res ; 44(12): 5597-614, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-26980282

RESUMEN

Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1 We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells.


Asunto(s)
Proteínas de Arabidopsis/genética , ADN Polimerasa II/genética , Epigénesis Genética , Lipocalinas/genética , Proteínas de Dominio MADS/genética , Arabidopsis/enzimología , Arabidopsis/genética , Cromatina/genética , Replicación del ADN/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/genética , Mutación , Complejo Represivo Polycomb 2 , Proteínas Represoras/genética , Transcripción Genética
9.
Arch Environ Contam Toxicol ; 68(4): 663-77, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25578768

RESUMEN

Aquatic organisms are often exposed to mixtures of low levels of pollutants whose presence and effects can pass easily unnoticed if only traditional monitoring strategies are employed. The main aim of this work was to assess the presence and effects of trace levels of pollutants in a scarcely affected area through the combination of chemical and biological approaches. Sediments were collected along a river with little anthropogenic pressure and assayed for cytochrome P450 (Cyp1a)-dependent ethoxyresorufin-O-deethylase (EROD) activity with the rainbow trout gonadal cell line RTG-2. Chemical analyses were performed in these sediments using two-dimensional gas chromatography-time-of-flight mass spectrometry. Sediment samples induced EROD activity, and chemical analyses evidenced the presence of a wide variety of contaminants in the range of nanograms per gram of dry weight. Correlation analysis between EROD induction and chemical analyses data showed an r value of 0.840 (p < 0.05). In addition, fish from a fish farm located downstream of the sampling points exhibited high hepatic EROD levels as well as an induced expression of cyp1a and cyp3a. In conclusion, only an appropriate combination of biological and chemical techniques allowed the detection of the presence of trace levels of contaminants in a theoretically nonaffected river.


Asunto(s)
Acuicultura , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Bioensayo , Citocromo P-450 CYP1A1/metabolismo , Sedimentos Geológicos/química , Técnicas In Vitro , Oncorhynchus mykiss/metabolismo , Ríos/química
10.
Plant J ; 61(4): 623-36, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19947980

RESUMEN

We have characterized a mutation affecting the Arabidopsis EARLY IN SHORT DAYS 7 (ESD7) gene encoding the catalytic subunit of DNA polymerase epsilon (epsilon), AtPOL2a. The esd7-1 mutation causes early flowering independently of photoperiod, shortened inflorescence internodes and altered leaf and root development. esd7-1 is a hypomorphic allele whereas knockout alleles displayed an embryo-lethal phenotype. The esd7 early flowering phenotype requires functional FT and SOC1 proteins and might also be related to the misregulation of AG and AG-like gene expression found in esd7. Genes involved in the modulation of chromatin structural dynamics, such as LHP1/TFL2 and EBS, which negatively regulate FT expression, were found to interact genetically with ESD7. In fact a molecular interaction between the carboxy terminus of ESD7 and TFL2 was demonstrated in vitro. Besides, fas2 mutations suppressed the esd7 early flowering phenotype and ICU2 was found to interact with ESD7. Discrete regions of the chromatin of FT and AG loci were enriched in activating epigenetic marks in the esd7-1 mutant. We concluded that ESD7 might be participating in processes involved in chromatin-mediated cellular memory.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , ADN Polimerasa II/metabolismo , Flores/crecimiento & desarrollo , Silenciador del Gen , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Dominio Catalítico , Cromatina/metabolismo , Clonación Molecular , ADN Polimerasa II/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Mutación , ARN de Planta/genética , Transformación Genética
11.
Aquat Toxicol ; 94(1): 16-27, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19540603

RESUMEN

A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.


Asunto(s)
Daphnia/efectos de los fármacos , Monitoreo del Ambiente , Agua Dulce/química , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/toxicidad , Animales , Citocromo P-450 CYP1A1/análisis , Hidrocarburos Clorados/análisis , Metales Pesados/análisis , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA