Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Big Data ; 10(1): 119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483882

RESUMEN

Users on social networks such as Twitter interact with each other without much knowledge of the real-identity behind the accounts they interact with. This anonymity has created a perfect environment for bot accounts to influence the network by mimicking real-user behaviour. Although not all bot accounts have malicious intent, identifying bot accounts in general is an important and difficult task. In the literature there are three distinct types of feature sets one could use for building machine learning models for classifying bot accounts. These feature-sets are: user profile metadata, natural language features (NLP) extracted from user tweets and finally features extracted from the the underlying social network. Profile metadata and NLP features are typically explored in detail in the bot-detection literature. At the same time less attention has been given to the predictive power of features that can be extracted from the underlying network structure. To fill this gap we explore and compare two classes of embedding algorithms that can be used to take advantage of information that network structure provides. The first class are classical embedding techniques, which focus on learning proximity information. The second class are structural embedding algorithms, which capture the local structure of node neighbourhood. We show that features created using structural embeddings have higher predictive power when it comes to bot detection. This supports the hypothesis that the local social network formed around bot accounts on Twitter contains valuable information that can be used to identify bot accounts.

2.
Chem Phys Lipids ; 221: 83-92, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30926383

RESUMEN

The elastic property of membranes self-assembled from AB diblock and ABA triblock copolymers, as coarse-grained model of lipids and the bolalipids, are studied using the self-consistent field theory (SCFT). Specifically, solutions of the SCFT equations, corresponding to membranes in different geometries (planar, cylindrical, spherical, and pore) have been obtained for a model system composed of amphiphilic AB diblock copolymers and ABA triblock copolymers dissolved in A homopolymers. The free energy of the membranes with different geometries is then used to extract the bending modulus, Gaussian modulus, and line tension of the membranes. The results reveal that the bending modulus of the triblock membrane is greater than that of the diblock membrane. Furthermore, the Gaussian modulus and line tension of the triblock membrane indicate that the triblock membranes have higher pore formation energy than that of the diblock membranes. The equilibrium bridging and looping fractions of the triblock copolymers are also obtained. Implications of the theoretical results on the elastic properties of biologically equivalent lipid bilayers and the bolalipid membranes are discussed.


Asunto(s)
Membrana Dobles de Lípidos/síntesis química , Lípidos/química , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química
4.
J Chem Phys ; 143(13): 134902, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26450329

RESUMEN

We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.

5.
Artículo en Inglés | MEDLINE | ID: mdl-25768537

RESUMEN

The line tension or edge energy of bilayer membranes self-assembled from binary amphiphilic molecules is studied using self-consistent-field theory (SCFT). Specifically, solutions of the SCFT equations corresponding to an infinite membrane with a circular pore, or an open membrane, are obtained for a coarse-grained model in which the amphiphilic species and hydrophilic solvents are represented by ABandED diblock copolymers and C homopolymers, respectively. The edge energy of the membrane is extracted from the free energy of the open membranes. Results for membranes composed of mixtures of symmetric and cone- or inverse cone-shaped amphiphilic molecules with neutral and/or repulsive interactions are obtained and analyzed. It is observed that an increase in the concentration of the cone-shaped species leads to a decrease of the line tension. In contrast, adding inverse cone-shaped copolymers results in an increase of the line tension. Furthermore, the density profile of the copolymers reveals that the line tension is regulated by the distribution of the amphiphiles at the bilayer edge.


Asunto(s)
Membrana Dobles de Lípidos/química , Modelos Moleculares , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Porosidad , Solventes/química , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA