Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 33(4): 1072-81, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17011214

RESUMEN

The quality of MRI time series data, which allows the study of dynamic processes, is often affected by confounding sources of signal fluctuation, including the cardiac and respiratory cycle. An adaptive filter is described, reducing these signal fluctuations as long as they are repetitive and their timing is known. The filter, applied in image domain, does not require temporal oversampling of the artifact-related fluctuations. Performance is demonstrated for suppression of cardiac and respiratory artifacts in 10-minute brain scans on 6 normal volunteers. Experimental parameters resemble a typical fMRI experiment (17 slices; 1700 ms TR). A second dataset was acquired at a rate well above the Nyquist frequency for both cardiac and respiratory cycle (single slice; 100 ms TR), allowing identification of artifacts specific to the cardiac and respiratory cycles, aiding assessment of filtering performance. Results show significant reduction in temporal standard deviation (SD(t)) in all subjects. For all 6 datasets with 1700 ms TR combined, the filtering method resulted in an average reduction in SD(t) of 9.2% in 2046 voxels substantially affected by respiratory artifacts, and 12.5% for the 864 voxels containing substantial cardiac artifacts. The maximal SD(t) reduction achieved was 52.7% for respiratory and 55.3% for cardiac filtering. Performance was found to be at least equivalent to the previously published RETROICOR method. Furthermore, the interaction between the filter and fMRI activity detection was investigated using Monte Carlo simulations, demonstrating that filtering algorithms introduce a systematic error in the detected BOLD-related signal change if applied sequentially. It is demonstrated that this can be overcome by combining physiological artifact filtering and detection of BOLD-related signal changes simultaneously. Visual fMRI data from 6 volunteers were analyzed with and without the filter proposed here. Inclusion of the cardio-respiratory regressors in the design matrix yielded a 4.6% t-score increase and 4.0% increase in the number of significantly activated voxels.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Corazón/fisiología , Humanos , Masculino , Persona de Mediana Edad , Respiración
2.
Magn Reson Imaging ; 24(8): 979-92, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16997067

RESUMEN

A number of recent studies of human brain activity using blood-oxygen-level-dependent (BOLD) fMRI and EEG have reported the presence of spatiotemporal patterns of correlated activity in the absence of external stimuli. Although these patterns have been hypothesized to contain important information about brain architecture, little is known about their origin or about their relationship to active cognitive processes such as conscious awareness and monitoring of the environment. In this study, we have investigated the amplitude and spatiotemporal characteristics of resting-state activity patterns and their dependence on the subjects' alertness. For this purpose, BOLD fMRI was performed at 3.0 T on 12 normal subjects using a visual stimulation protocol, followed by a 27 min rest period, during which subjects were allowed to fall asleep. In subjects who were asleep at the end of the scan, we found (a) a higher amplitude of BOLD signal fluctuation during rest compared with subjects who were awake at the end of the scan; (b) spatially independent patterns of correlated activity that involve all of gray matter, including deep brain nuclei; (c) many patterns that were consistent across subjects; (d) that average percentage levels of fluctuation in visual cortex (VC) and whole brain were higher in subjects who were asleep (up to 1.71% and 1.16%, respectively) than in those who were awake (up to 1.15% and 0.96%) at the end of the scan and were comparable with those levels evoked by intense visual stimulation (up to 1.85% and 0.76% for two subject groups); (e) no confirmation of correlation, positive or negative, between thalamus and VC found in earlier studies. These findings suggest that resting-state activity continues during sleep and does not require active cognitive processes or conscious awareness.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Descanso/fisiología , Fases del Sueño/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Reproducibilidad de los Resultados
3.
Magn Reson Med ; 54(6): 1465-72, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16276507

RESUMEN

The blood oxygen level dependent (BOLD) response, as measured with fMRI, offers good spatial resolution compared to other non-invasive neuroimaging methods. The use of a spin echo technique rather than the conventional gradient echo technique may further improve the resolution by refocusing static dephasing effects around the larger vessels, so sensitizing the signal to the microvasculature. In this work the width of the point spread function (PSF) of the BOLD response at a field strength of 3 Tesla is compared for these two approaches. A double echo EPI pulse sequence with simultaneous collection of gradient echo and spin echo signal allows a direct comparison of the techniques. Rotating multiple-wedge stimuli of different spatial frequencies are used to estimate the width of the BOLD response. Waves of activation are created on the surface of the visual cortex, which begin to overlap as the wedge separation decreases. The modulation of the BOLD response decreases with increasing spatial frequency in a manner dependent on its width. The spin echo response shows a 13% reduction in the width of the PSF, but at a cost of at least 3-fold reduction in contrast to noise ratio.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Oxígeno/metabolismo , Corteza Visual/fisiología , Campos Visuales/fisiología , Adulto , Algoritmos , Imagen Eco-Planar/métodos , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA