Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Integr Comp Biol ; 64(1): 107-119, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38755009

RESUMEN

The amniotic egg fulfils a critical role in reproduction by serving as an interface between the external environment and the embryo. Because non-avian reptiles are rarely incubated, they must be heated by, and absorb water from, the oviposition site for the developing embryo. The mechanisms by which they absorb sufficient, but not excess, water and how these mechanisms vary with local habitat is largely unknown, despite its significance to their evolution. Here, we first performed histology, Fourier-transform infrared spectroscopy and dynamic vapor sorption experiments to elucidate the mechanisms of eggshell absorption for 56 reptile species. Then, we used phylogenetic comparative analysis to test the hypothesis that the absorptive capacity of reptile eggshells increases with aridity of the environment. We found that water absorption increases in the presence of a superficial mucopolysaccharide layer and decreases with increased calcium content. We found that eggs from arid environments have highly absorbent eggshells, but only in species with weakly calcified shells. Our results suggest that reptile eggshells have over evolutionary time tuned absorptive capacity to environmental moisture level. Since these eggs often must sustain conflicting constraints, they may serve as inspirations for new biomimetic materials, such as water filtering membranes or humidity sensors.


Asunto(s)
Cáscara de Huevo , Reptiles , Animales , Cáscara de Huevo/química , Cáscara de Huevo/fisiología , Reptiles/fisiología , Filogenia , Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Ecosistema
2.
PNAS Nexus ; 3(4): pgae138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38638835

RESUMEN

Colors are well studied in bird plumage but not in other integumentary structures. In particular, iridescent colors from structures other than plumage are undescribed in birds. Here, we show that a multilayer of keratin and lipids is sufficient to produce the iridescent bill of Spermophaga haematina. Furthermore, that the male bill is presented to the female under different angles during display provides support for the hypothesis that iridescence evolved in response to sexual selection. This is the first report of an iridescent bill, and only the second instance of iridescence in birds in which melanosomes are not involved. Furthermore, an investigation of museum specimens of an additional 98 species, showed that this evolved once, possibly twice. These results are promising, as they suggest that birds utilize a wider array of physical phenomena to produce coloration and should further stimulate research on nonplumage integumentary colors.

3.
Syst Biol ; 73(2): 343-354, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-38289860

RESUMEN

How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.


Asunto(s)
Evolución Biológica , Filogenia , Pigmentación , Animales , Pigmentación/genética , Pigmentación/fisiología , Passeriformes/clasificación , Passeriformes/genética , Passeriformes/fisiología , Color
4.
J R Soc Interface ; 20(207): 20230228, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788712

RESUMEN

Colour is often not a static trait but can change over time either through biotic or abiotic factors. Humidity-dependent colour change can occur through either morphological change (e.g. to feather barbules in birds) or by the replacement of air by water causing a shift in refractive index, as seen in arthropod multi-layer cuticles or scales. The scaled springtail Lepidocyrtus cyaneus has scales that produce colour largely via thin film interference from their lamina. We observed a marked colour change from golden to violet/purple coloration in humid conditions. Light microscopy, micro-spectrophotometry, contact angle goniometry and optical modelling indicate that the formation of a thin film of water on top of the hydrophilic scales increases their laminar thin film thickness, causing a shift towards violet/purple colour. Evaporation of the water film causes the metallic golden colour to return. This constitutes a remarkably rapid colour change (in the order of seconds), only limited by the speed of water film condensation and evaporation, that may serve as inspiration for new dynamically coloured materials and sensors.


Asunto(s)
Artrópodos , Agua , Animales , Humedad , Color , Aves , Microscopía Electrónica de Transmisión
5.
J R Soc Interface ; 20(200): 20220920, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36854381

RESUMEN

Until recently, and when compared with diurnal birds that use contrasting plumage patches and complex feather structures to convey visual information, communication in nocturnal and crepuscular species was considered to follow acoustic and chemical channels. However, many birds that are active in low-light environments have evolved intensely white plumage patches within otherwise inconspicuous plumages. We used spectrophotometry, electron microscopy, and optical modelling to explain the mechanisms producing bright white tail feather tips of the Eurasian woodcock Scolopax rusticola. Their diffuse reflectance was approximately 30% higher than any previously measured feather. This intense reflectance is the result of incoherent light scattering from a disordered nanostructure composed of keratin and air within the barb rami. In addition, the flattening, thickening and arrangement of those barbs create a Venetian-blind-like macrostructure that enhances the surface area for light reflection. We suggest that the woodcocks have evolved these bright white feather patches for long-range visual communication in dimly lit environments.


Asunto(s)
Asteraceae , Charadriiformes , Animales , Aves , Plumas , Citoesqueleto
6.
J R Soc Interface ; 19(190): 20220169, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35611618

RESUMEN

While the specific mechanisms of colour production in biological systems are diverse, the mechanics of colour production are straightforward and universal. Colour is produced through the selective absorption of light by pigments, the scattering of light by nanostructures or a combination of both. When Tigriopus californicus copepods were fed a carotenoid-limited diet of yeast, their orange-red body coloration became faint, but their eyespots remained unexpectedly bright red. Raman spectroscopy indicated a clear signature of the red carotenoid pigment astaxanthin in eyespots; however, refractive index matching experiments showed that eyespot colour disappeared when placed in ethyl cinnamate, suggesting a structural origin for the red coloration. We used transmission electron microscopy to identify consecutive nanolayers of spherical air pockets that, when modelled as a single thin film layer, possess the correct periodicity to coherently scatter red light. We then performed microspectrophotometry to quantify eyespot coloration and confirmed a distinct colour difference between the eyespot and the body. The observed spectral reflectance from the eyespot matched the reflectance predicted from our models when considering the additional absorption by astaxanthin. Together, this evidence suggests the persistence of red eyespots in copepods is the result of a combination of structural and pigmentary coloration.


Asunto(s)
Copépodos , Animales , Carotenoides , Microscopía Electrónica de Transmisión , Orgánulos , Pigmentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA