Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Open ; 13(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39158386

RESUMEN

The root system of plants is a vital part for successful development and adaptation to different soil types and environments. A major determinant of the shape of a plant root system is the formation of lateral roots, allowing for expansion of the root system. Arabidopsis thaliana, with its simple root anatomy, has been extensively studied to reveal the genetic program underlying root branching. However, to get a more general understanding of lateral root development, comparative studies in species with a more complex root anatomy are required. Here, by combining optimized clearing methods and histology, we describe an atlas of lateral root development in Brachypodium distachyon, a wild, temperate grass species. We show that lateral roots initiate from enlarged phloem pole pericycle cells and that the overlying endodermis reactivates its cell cycle and eventually forms the root cap. In addition, auxin signaling reported by the DR5 reporter was not detected in the phloem pole pericycle cells or young primordia. In contrast, auxin signaling was activated in the overlying cortical cell layers, including the exodermis. Thus, Brachypodium is a valuable model to investigate how signaling pathways and cellular responses have been repurposed to facilitate lateral root organogenesis.


Asunto(s)
Brachypodium , Raíces de Plantas , Brachypodium/crecimiento & desarrollo , Brachypodium/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Transducción de Señal , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
New Phytol ; 244(1): 104-115, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38666346

RESUMEN

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum , Ácidos Indolacéticos , Mutación , Proteínas de Plantas , Raíces de Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/anatomía & histología , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenotipo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Alelos , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/crecimiento & desarrollo , Genes de Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Tipificación del Cuerpo/genética
3.
Nat Plants ; 7(3): 353-364, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33686223

RESUMEN

Plant roots acquire nutrients and water while managing interactions with the soil microbiota. The root endodermis provides an extracellular diffusion barrier through a network of lignified cell walls called Casparian strips, supported by subsequent formation of suberin lamellae. Whereas lignification is thought to be irreversible, suberin lamellae display plasticity, which is crucial for root adaptative responses. Although suberin is a major plant polymer, fundamental aspects of its biosynthesis and turnover have remained obscure. Plants shape their root system via lateral root formation, an auxin-induced process requiring local breaking and re-sealing of endodermal lignin and suberin barriers. Here, we show that differentiated endodermal cells have a specific, auxin-mediated transcriptional response dominated by cell wall remodelling genes. We identified two sets of auxin-regulated GDSL lipases. One is required for suberin synthesis, while the other can drive suberin degradation. These enzymes have key roles in suberization, driving root suberin plasticity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Lípidos , Dominios Proteicos , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Conjuntos de Datos como Asunto , Endodermo/metabolismo , Técnicas de Inactivación de Genes , Ácidos Indolacéticos/metabolismo , Lípidos/genética , Células Vegetales/metabolismo , Raíces de Plantas/metabolismo , Polimerizacion , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA