Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 45(6): 1664-1681, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35147232

RESUMEN

Leaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution. We measured leaf temperatures and assessed three modes of leaf thermoregulation: leaf morphology, midday canopy stomatal conductance and stomatal sensitivity to vapour pressure deficit. Data were used to parameterize a leaf energy balance model to estimate contrasts in midday leaf temperature in warm- and cool-adapted genotypes. Warm-adapted genotypes had 39% smaller leaves and 38% higher midday stomatal conductance, reflecting a 3.8°C cooler mean leaf temperature than cool-adapted genotypes. Leaf temperatures modelled over the warmest months were on average 1.1°C cooler in warm- relative to cool-adapted genotypes. Results show that plants adapted to warm environments are predisposed to tightly regulate leaf temperatures during heat waves, potentially at an increased risk of hydraulic failure.


Asunto(s)
Populus , Árboles , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Populus/genética , Árboles/fisiología , Presión de Vapor , Agua
2.
Glob Chang Biol ; 24(11): 5454-5470, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194795

RESUMEN

The mechanisms of plant litter decay in drylands are poorly understood, limiting the accuracy of nutrient-cycling models for these systems. We monitored the decay of 12 leaf litter types on the soil surface of the Sonoran Desert for 34 months and assessed what traits predicted mass loss and how exposure to different wavebands of sunlight influenced mass loss. Mass loss varied considerably among litter types, ranging from 42%-96% after 34 months in full sunlight. Traditional indices of litter quality (e.g., initial C:N or lignin:N ratios) failed to predict differences in mass loss among litter types. The strongest predictor of mass loss was the microbial respiration rate of initial litter, which explained 45%-54% of the variation in loss among litter types. Microbial respiration rates were not correlated with traditional indices of litter quality, but were positively correlated with the water-soluble fraction in litter and concentrations of dissolved organic C in this fraction. Traditional indices of litter quality failed to predict decay likely because they did a poor job of predicting microbial degradability of litter, not because microbial degradation was a minor driver of decay. In all radiation-exposure treatments, water-soluble fractions and respiration rates increased through decay and were several times higher after 34 months than initially. Hence, labile pools and microbial degradability of litter increased through decay in contrast to traditional views that labile pools decline and constrain microbes. Litter exposed to UV or UV through blue radiation wavelengths, lost on average 1.3 times or 1.5 times more mass, respectively, than litter not exposed to these wavebands. The magnitude of this photodegradation was greater in litter types that had higher initial concentrations of hemicellulose and cellulose per unit surface area. Litter exposed to full sun had higher water-soluble fractions and usually had higher respiration rates, illustrating that sunlight accelerated microbial degradation by increasing labile pools. The processes driving litter decay appeared to differ appreciably from mesic systems and involved strong couplings between abiotic and biotic drivers.


Asunto(s)
Clima Desértico , Fotólisis , Hojas de la Planta/química , Microbiología del Suelo , Luz Solar , Agua/metabolismo , Arizona , Biomasa , Ecosistema
3.
Ecol Lett ; 15(2): 164-75, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22136670

RESUMEN

Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.


Asunto(s)
Adaptación Biológica , Ecosistema , Calentamiento Global , Desarrollo de la Planta , Regiones Árticas , Biodiversidad , Modelos Biológicos
4.
Int J Biometeorol ; 49(4): 244-55, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15726447

RESUMEN

We assessed how small patches of contrasting urban ground cover [mesiscape (turf), xeriscape (gravel), concrete, and asphalt] altered the microclimate and performance of adjacent oleander (Nerium oleander L.) plants in Phoenix, Arizona during fall/winter (September-February) and spring/summer (March-September). Ground-cover and oleander canopy surface temperatures, canopy air temperatures and pot soil temperatures tended to be lowest in the mesiscape and highest in the asphalt and concrete. Canopy air vapor pressure deficits were lowest in the mesiscape and highest in the asphalt plot. Rates of net photosynthesis of all oleander plants were highest in October and May, and declined through mid-summer (June-July), when rates tended to be highest in the cooler mesiscape, particularly when water was limiting. During fall/winter, oleanders in the mesiscape produced 20% less biomass, 13% less leaf area, and had 12% lower relative growth rates (R(G)) than those in the other ground covers. Lower nighttime temperatures in the mesiscape in December led to oleander frost damage. During spring/summer, oleanders in the mesiscape produced 11% more biomass, 16% more leaf area, and had 3% higher R(G) than those in the other cover types. The effects of urban ground cover on oleander performance were season-specific; while oleander growth was greatest in the mesiscape during spring/summer, it was lowest during fall/winter and these plants experienced frost damage. Because all oleander plants produced >10 times as much biomass during the spring/summer, on an annual basis oleanders in the mesiscape produced 5-11% more biomass than plants in the warmer ground covers.


Asunto(s)
Microclima , Nerium/crecimiento & desarrollo , Arizona , Biomasa , Ciudades , Humedad , Hidrocarburos , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Transpiración de Plantas , Poaceae , Estaciones del Año , Temperatura
5.
Photochem Photobiol ; 81(5): 1086-93, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15689180

RESUMEN

We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the growth, biomass production and phenylpropanoid concentrations of Deschampsia antarctica during the springtime ozone depletion season at Palmer Station, along the Antarctic Peninsula. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B either by 83% (reduced UV-B) or by 12% (near-ambient UV-B) over the 63 day experiment (7 November 1998-8 January 1999) when ozone depletion averaged 17%. Plants growing under near-ambient UV-B had 41% and 40% lower relative growth rates and net assimilation rates, respectively, than those under reduced UV-B. The former plants produced 50% less total biomass as a result of having 47% less aboveground biomass. The reduction in aboveground biomass was a result of a 29% lower leaf elongation rate resulting in shorter leaves and 59% less total leaf area in plants grown under reduced UV-B. p-Coumaric, caffeic and ferulic acids were the major hydroxycinnamic acids, and luteolin derivatives were the major flavonoids in both insoluble and soluble leaf extracts. Concentrations of insoluble p-coumaric and caffeic acid and soluble ferulic acids were 38%, 48% and 60% higher, respectively, under near-ambient UV-B than under reduced UV-B. There were no UV-B effects on concentrations of insoluble or soluble flavonoids.


Asunto(s)
Ácidos Cumáricos/análisis , Flavonoides/análisis , Ozono , Poaceae/química , Poaceae/efectos de la radiación , Rayos Ultravioleta , Regiones Antárticas , Biomasa , Clorofila/análisis , Poaceae/crecimiento & desarrollo , Estaciones del Año
6.
Oecologia ; 87(1): 51-57, 1991 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28313351

RESUMEN

The photosynthetic responses to light of leaves irradiated on the adaxial or abaxial surfaces, were measured for plants with contrasting leaf orientations. For vertical-leaf species of open habitats (Eryngium yuccifolium and Silphium terebinthinaceum), photosynthetic rates were identical when irradiated on either surface. However, for horizontal-leaf species of open habitats (Ambrosia trifida and Solidago canadensis), light-saturated rates of photosynthesis for adaxial irradiation were 19 to 37% higher than rates for abaxial irradiation. Leaves of understory plants (Asarum canadense and Hydrophyllum canadense) were functionally symmetrical although they had horizontal orientation. Photosynthetic rates were measured at saturating CO2, thus differences in the response to incident irradiance presumably resulted from complex interactions of light and leaf optical properties rather than from stomatal effects. Differences in absorptance (400-700 nm) among leaf surfaces were evident for horizontal-leaf species but the primary determinant of functional symmetry was leaf anatomy. Functionally symmetrical leaves had upper and lower palisade layers of equal thickness (vertical leaves of open habitats) or were composed primarily of a single layer of photosynthetic cells (horizontal leaves of understory habitats). Photosynthetic symmetry of vertical-leaf species may be an adaptation to maximize daily integrated carbon gain and water-use efficiency, whereas asymmetry of horizontal-leaf species may be an adaptation to maximize daily integrated carbon gain and photosynthetic nutrient-use efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA