Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 251: 104074, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36126368

RESUMEN

Biologically mediated degradation of organic compounds in porous media is a complex mathematical problem, described by a non-linear differential equation. The organic compound gets in contact with the biomass, and an enzyme-catalysed reaction takes place. The net result is that part of the parent compound degrades into some daughter product, while some of the organic carbon is used for microbial growth. The rate of biomass growth in the presence of a limiting nutrient supply is usually modelled with the experimentally derived Monod equation, i.e., it is proportional to the actual existing biomass multiplied by a factor that is non-linear in terms of available organic matter. This non-linearity in the degradation equation implies a strong difficulty in directly implementing a numerical solution within a fully Lagrangian framework, and thus, numerical solutions have traditionally been sought in either an Eulerian, or else an Eulerian-Lagrangian framework. Here we pursue a fully Lagrangian solution to the problem. First, the Monod empirical equation is formulated as the outcome of a two-step reaction; while the approach is less general than other derivations existing in the literature based on a full understanding of the thermodynamics of the process, it allows two things: 1) providing some physical meaning to the actual parameters in the Monod equation, and more interestingly, 2) formulating a methodology for the solution of the degradation equation incorporating Monod kinetics by means of a particle tracking formulation. For the latter purpose, both reactants and biomass are represented by particles, and their location at any given time is represented by a kernel that accounts for the uncertainty in the actual physical location. By solving the reaction equation in a kernel framework, we can reproduce the Monod kinetics and, as a particular result in the case no biomass growth is allowed, the Michaelis-Menten kinetics. The methodology proposed is then successfully applied to reproduce two studies of microbially induced degradation of organic compounds in porous media, first, the observed kinetics of Pseudomonas putida F1 in batch reactors while growing on benzene, toluene and phenol, and second, the column study of carbon tetrachloride biodegradation by the denitrifying bacterium Pseudomonas Stutzeri KC.


Asunto(s)
Benceno , Tolueno , Cinética , Biodegradación Ambiental , Biomasa
2.
J Math Biol ; 83(6-7): 71, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870766

RESUMEN

Cells and tissues exhibit sustained oscillatory deformations during remodelling, migration or embryogenesis. Although it has been shown that these oscillations correlate with intracellular biochemical signalling, the role of these oscillations is as yet unclear, and whether they may trigger drastic cell reorganisation events or instabilities remains unknown. Here, we present a rheological model that incorporates elastic, viscous and frictional components, and that is able to generate oscillatory response through a delay adaptive process of the rest-length. We analyse its stability as a function of the model parameters and deduce analytical bounds of the stable domain. While increasing values of the delay and remodelling rate render the model unstable, we also show that increasing friction with the substrate destabilises the oscillatory response. This fact was unexpected and still needs to be verified experimentally. Furthermore, we numerically verify that the extension of the model with non-linear deformation measures is able to generate sustained oscillations converging towards a limit cycle. We interpret this sustained regime in terms of non-linear time varying stiffness parameters that alternate between stable and unstable regions of the linear model. We also note that this limit cycle is not present in the linear model. We study the phase diagram and the bifurcations of the non-linear model, based on our conclusions on the linear one. Such dynamic analysis of the delay visco-elastic model in the presence of friction is absent in the literature for both linear and non-linear rheologies. Our work also shows how increasing values of some parameters such as delay and friction decrease its stability, while other parameters such as stiffness stabilise the oscillatory response.


Asunto(s)
Fricción , Modelos Lineales , Reología , Viscosidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-32432102

RESUMEN

Many epithelial developmental processes like cell migration and spreading, cell sorting, or T1 transitions can be described as planar deformations. As such, they can be studied using two-dimensional tools and vertex models that can properly predict collective dynamics. However, many other epithelial shape changes are characterized by out-of-plane mechanics and three-dimensional effects, such as bending, cell extrusion, delamination, or invagination. Furthermore, during planar cell dynamics or tissue repair in monolayers, spatial intercalation between the apical and basal sides has even been detected. Motivated by this lack of symmetry with respect to the midsurface, we here present a 3D hybrid model that allows us to model differential contractility at the apical, basal or lateral sides. We use the model to study the effects on wound closure of solely apical or lateral contractile contributions and show that an apical purse-string can be sufficient for full closure when it is accompanied by volume preservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA