Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237723

RESUMEN

Psychiatric disorders such as major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are characterized by altered cognition and mood, brain functions that depend on information processing by cortical microcircuits. We hypothesized that psychiatric disorders would display cell type-specific transcriptional alterations in neuronal subpopulations that make up cortical microcircuits: excitatory pyramidal (PYR) neurons and vasoactive intestinal peptide- (VIP), somatostatin- (SST), and parvalbumin- (PVALB) expressing inhibitory interneurons. Using laser capture microdissection followed by RNA sequencing (LCM-seq), we performed cell type-specific molecular profiling of subgenual anterior cingulate cortex, a region implicated in mood and cognitive control. We sequenced libraries from 130 whole cells pooled per neuronal subtype (VIP, SST, PVALB, superficial and deep PYR) in 76 subjects from the University of Pittsburgh Brain Tissue Donation Program, evenly split between MDD, BD and SCZ subjects and healthy controls (totaling 380 bulk transcriptomes from ~50,000 neurons). We identified hundreds of differentially expressed (DE) genes and biological pathways across disorders and neuronal subtypes, with the vast majority in interneurons, particularly PVALB. While DE genes were unique to each cell type, there was a partial overlap across disorders for genes involved in the formation and maintenance of neuronal circuits. We observed coordinated alterations in biological pathways between select pairs of microcircuit cell types, also partially shared across disorders. Finally, DE genes coincided with known risk variants from psychiatric genome-wide association studies, suggesting cell type-specific convergence between genetic and transcriptomic risk for psychiatric disorders. Our study suggests transdiagnostic cortical microcircuit pathology in SCZ, BD, and MDD and sets the stage for larger-scale studies investigating how cell circuit-based changes contribute to shared psychiatric risk.

2.
Neuroimage ; 276: 120177, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211192

RESUMEN

Many neuropsychiatric disorders are characterised by altered cortical thickness, but the cell types underlying these changes remain largely unknown. Virtual histology (VH) approaches map regional patterns of gene expression with regional patterns of MRI-derived phenotypes, such as cortical thickness, to identify cell types associated with case-control differences in those MRI measures. However, this method does not incorporate valuable information of case-control differences in cell type abundance. We developed a novel method, termed case-control virtual histology (CCVH), and applied it to Alzheimer's disease (AD) and dementia cohorts. Leveraging a multi-region gene expression dataset of AD cases (n = 40) and controls (n = 20), we quantified AD case-control differential expression of cell type-specific markers across 13 brain regions. We then correlated these expression effects with MRI-derived AD case-control cortical thickness differences across the same regions. Cell types with spatially concordant AD-related effects were identified through resampling marker correlation coefficients. Among regions thinner in AD, gene expression patterns identified by CCVH suggested fewer excitatory and inhibitory neurons, and greater proportions of astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor cells, and endothelial cells in AD cases vs. controls. In contrast, original VH identified expression patterns suggesting that excitatory but not inhibitory neuron abundance was associated with thinner cortex in AD, despite the fact that both types of neurons are known to be lost in the disorder. Compared to original VH, cell types identified through CCVH are more likely to directly underlie cortical thickness differences in AD. Sensitivity analyses suggest our results are largely robust to specific analysis choices, like numbers of cell type-specific marker genes used and background gene sets used to construct null models. As more multi-region brain expression datasets become available, CCVH will be useful for identifying the cellular correlates of cortical thickness across neuropsychiatric illnesses.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Células Endoteliales/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Estudios de Casos y Controles
3.
Gigascience ; 112022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377463

RESUMEN

BACKGROUND: Whole-cell patch-clamp electrophysiology is an essential technique for understanding how single neurons translate their diverse inputs into a functional output. The relative inaccessibility of live human cortical neurons for experimental manipulation has made it difficult to determine the unique features of how human cortical neurons differ from their counterparts in other species. FINDINGS: We present a curated repository of whole-cell patch-clamp recordings from surgically resected human cortical tissue, encompassing 118 neurons from 35 individuals (age range, 21-59 years; 17 male, 18 female). Recorded human cortical neurons derive from layers 2 and 3 (L2&3), deep layer 3 (L3c), or layer 5 (L5) and are annotated with a rich set of subject and experimental metadata. For comparison, we also provide a limited set of comparable recordings from 21-day-old mice (11 cells from 5 mice). All electrophysiological recordings are provided in the Neurodata Without Borders (NWB) format and are available for further analysis via the Distributed Archives for Neurophysiology Data Integration online repository. The associated data conversion code is made publicly available and can help others in converting electrophysiology datasets to the open NWB standard for general reuse. CONCLUSION: These data can be used for novel analyses of biophysical characteristics of human cortical neurons, including in cross-species or cross-lab comparisons or in building computational models of individual human neurons.


Asunto(s)
Neuronas , Humanos , Masculino , Femenino , Ratones , Animales , Adulto Joven , Adulto , Persona de Mediana Edad , Técnicas de Placa-Clamp , Neuronas/fisiología , Electrofisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA