Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Stimul ; 16(1): 100-107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36693536

RESUMEN

BACKGROUND: and purpose: Fatigue is among the most common persistent symptoms following post-acute sequelae of Sars-COV-2 infection (PASC). The current study investigated the potential therapeutic effects of High-Definition transcranial Direct Current Stimulation (HD-tDCS) associated with rehabilitation program for the management of PASC-related fatigue. METHODS: Seventy patients with PASC-related fatigue were randomized to receive 3 mA or sham HD-tDCS targeting the left primary motor cortex (M1) for 30 min paired with a rehabilitation program. Each patient underwent 10 sessions (2 sessions/week) over five weeks. Fatigue was measured as the primary outcome before and after the intervention using the Modified Fatigue Impact Scale (MFIS). Pain level, anxiety severity and quality of life were secondary outcomes assessed, respectively, through the McGill Questionnaire, Hamilton Anxiety Rating Scale (HAM-A) and WHOQOL. RESULTS: Active HD-tDCS resulted in significantly greater reduction in fatigue compared to sham HD-tDCS (mean group MFIS reduction of 22.11 points vs 10.34 points). Distinct effects of HD-tDCS were observed in fatigue domains with greater effect on cognitive (mean group difference 8.29 points; effect size 1.1; 95% CI 3.56-13.01; P < .0001) and psychosocial domains (mean group difference 2.37 points; effect size 1.2; 95% CI 1.34-3.40; P < .0001), with no significant difference between the groups in the physical subscale (mean group difference 0.71 points; effect size 0.1; 95% CI 4.47-5.90; P = .09). Compared to sham, the active HD-tDCS group also had a significant reduction in anxiety (mean group difference 4.88; effect size 0.9; 95% CI 1.93-7.84; P < .0001) and improvement in quality of life (mean group difference 14.80; effect size 0.7; 95% CI 7.87-21.73; P < .0001). There was no significant difference in pain (mean group difference -0.74; no effect size; 95% CI 3.66-5.14; P = .09). CONCLUSION: An intervention with M1 targeted HD-tDCS paired with a rehabilitation program was effective in reducing fatigue and anxiety, while improving quality of life in people with PASC.


Asunto(s)
COVID-19 , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , SARS-CoV-2 , Calidad de Vida , Síndrome Post Agudo de COVID-19 , COVID-19/complicaciones , Dolor/etiología , Fatiga/etiología , Fatiga/terapia , Encéfalo/fisiología
2.
Front Hum Neurosci ; 16: 811550, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677206

RESUMEN

The use of transcranial Electrical Stimulation (tES) in the modulation of cognitive brain functions to improve neuropsychiatric conditions has extensively increased over the decades. tES techniques have also raised new challenges associated with study design, stimulation protocol, functional specificity, and dose-response relationship. In this paper, we addressed challenges through the emerging methodology to investigate the dose-response relationship of High Definition-transcranial Direct Current Stimulation (HD tDCS), identifying the role of negative valence in tinnitus perception. In light of the neurofunctional testable framework and tES application, hypotheses were formulated to measure clinical and surrogate endpoints. We posited that conscious pairing adequately pleasant stimuli with tinnitus perception results in correction of the loudness misperception and would be reinforced by concurrent active HD-tDCS on the left Dorsolateral Prefrontal Cortex (dlPFC). The dose-response relationship between HD-tDCS specificity and the loudness perception is also modeled. We conducted a double-blind, randomized crossover pilot study with six recruited tinnitus patients. Accrued data was utilized to design a well-controlled adaptive seamless Bayesian dose-response study. The sample size (n = 47, for 90% power and 95% confidence) and optimum interims were anticipated for adaptive decision-making about efficacy, safety, and single session dose parameters. Furthermore, preliminary pilot study results were sufficient to show a significant difference (90% power, 99% confidence) within the longitudinally detected self-report tinnitus loudness between before and under positive emotion induction. This study demonstrated a research methodology used to improve emotion regulation in tinnitus patients. In the projected method, positive emotion induction is essential for promoting functional targeting under HD-tDCS anatomical specificity to indicate the efficacy and facilitate the dose-finding process. The continuous updating of prior knowledge about efficacy and dose during the exploratory stage adapts the anticipated dose-response model. Consequently, the effective dose range to make superiority neuromodulation in correcting loudness misperception of tinnitus will be redefined. Highly effective dose adapts the study to a standard randomized trial and transforms it into the confirmatory stage in which active HD-tDCS protocol is compared with a sham trial (placebo-like). Establishing the HD-tDCS intervention protocols relying on this novel method provides reliable evidence for regulatory agencies to approve or reject the efficacy and safety. Furthermore, this paper supports a technical report for designing multimodality data-driven complementary investigations in emotion regulation, including EEG-driven neuro markers, Stroop-driven attention biases, and neuroimaging-driven brain network dynamics.

3.
Sci Rep ; 11(1): 13911, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230503

RESUMEN

Transcranial direct current stimulation (tDCS) has been used aiming to boost exercise performance and inconsistent findings have been reported. One possible explanation is related to the limitations of the so-called "conventional" tDCS, which uses large rectangular electrodes, resulting in a diffuse electric field. A new tDCS technique called high-definition tDCS (HD-tDCS) has been recently developed. HD-tDCS uses small ring electrodes and produces improved focality and greater magnitude of its aftereffects. This study tested whether HD-tDCS would improve exercise performance to a greater extent than conventional tDCS. Twelve endurance athletes (29.4 ± 7.3 years; 60.15 ± 5.09 ml kg-1 min-1) were enrolled in this single-center, randomized, crossover, and sham-controlled trial. To test reliability, participants performed two time to exhaustion (TTE) tests (control conditions) on a cycle simulator with 80% of peak power until volitional exhaustion. Next, they randomly received HD-tDCS (2.4 mA), conventional (2.0 mA), or active sham tDCS (2.0 mA) over the motor cortex for 20-min before performing the TTE test. TTE, heart rate (HR), associative thoughts, peripheral (lower limbs), and whole-body ratings of perceived exertion (RPE) were recorded every minute. Outcome measures were reliable. There was no difference in TTE between HD-tDCS (853.1 ± 288.6 s), simulated conventional (827.8 ± 278.7 s), sham (794.3 ± 271.2 s), or control conditions (TTE1 = 751.1 ± 261.6 s or TTE2 = 770.8 ± 250.6 s) [F(1.95; 21.4) = 1.537; P = 0.24; η2p = 0.123]. There was no effect on peripheral or whole-body RPE and associative thoughts (P > 0.05). No serious adverse effect was reported. A single session of neither HD-tDCS nor conventional tDCS changed exercise performance and psychophysiological responses in athletes, suggesting that a ceiling effect may exist.


Asunto(s)
Atletas/psicología , Resistencia Física/fisiología , Psicofisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Evaluación de Resultado en la Atención de Salud , Consumo de Oxígeno/fisiología , Esfuerzo Físico/fisiología , Reproducibilidad de los Resultados , Sensación/fisiología , Adulto Joven
4.
J Pain ; 12(5): 610-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21497140

RESUMEN

UNLABELLED: In this study we aimed to determine current distribution and short-term analgesic effects of transcranial direct current stimulation (tDCS) in fibromyalgia using different electrode montages. For each electrode montage, clinical effects were correlated with predictions of induced cortical current flow using magnetic resonance imaging-derived finite element method head model. Thirty patients were randomized into 5 groups (Cathodal-M1 [primary motor cortex], Cathodal-SO [supra-orbital area], Anodal-M1, Anodal-SO, and Sham) to receive tDCS application (2 mA, 20 minutes) using an extracephalic montage. Pain was measured using a visual numerical scale (VNS), pressure pain threshold (PPT), and a body diagram (BD) evaluating pain area. There was significant pain reduction in cathodal-SO and anodal-SO groups indexed by VNS. For PPT there was a trend for a similar effect in anodal-SO group. Computer simulation indicated that the M1-extracephalic montage produced dominantly temporo-parietal current flow, consistent with lack of clinical effects with this montage. Conversely, the SO-extracephalic montage produced current flow across anterior prefrontal structures, thus supporting the observed analgesic effects. Our clinical and modeling findings suggest that electrode montage, considering both electrodes, is critical for the clinical effects of M1-tDCS as electric current needs to be induced in areas associated with the pain matrix. These results should be taken into consideration for the design of pain tDCS studies. PERSPECTIVE: Results in this article support that electrode montage is a critical factor to consider for the clinical application of tDCS for pain control, as there is an important correlation between the location of induced electrical current and tDCS-induced analgesic effects.


Asunto(s)
Corteza Cerebral/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Fibromialgia/terapia , Manejo del Dolor , Adulto , Análisis de Varianza , Mapeo Encefálico , Femenino , Fibromialgia/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Dolor/fisiopatología , Dimensión del Dolor , Umbral del Dolor/fisiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA