Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18340, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112665

RESUMEN

This paper presents an in-depth investigation into the optimization of rare earth element (REE) separation through electrodialysis, leveraging a newly developed Class II phenomenological model. This study explores the pivotal roles of the HEDTA/Nd molar ratio and pH of feed solution on enhancing the separation efficiency of neodymium (Nd) and praseodymium (Pr) from lanthanum (La) and cerium (Ce). By integrating expanded Nernst-Planck equations and the concept of limiting current density, the model offers a sophisticated understanding of ion transport dynamics and the impacts of concentration polarization. Experimental validation confirms the model's predictive accuracy, demonstrating its practical applicability for industrial-scale operations. The research delineates how operational parameters such as chelating agent concentration and pH critically influence the purity and yield of separated REEs. The dynamic nature of chelation chemistry is also examined, highlighting its evolution during the electrodialysis process and its effect on the system's overall performance. Key findings illustrate that lower HEDTA/Nd molar ratios significantly enhance the purity of Nd + Pr by minimizing the chelation of La and Ce, thus facilitating their migration to the concentrate compartment. Conversely, higher ratios maximize yield by retaining more Nd + Pr in the feed compartment. This dual approach allows for optimized separation based on specific industrial requirements. The outcomes of this study not only advance the field of REE separation but also provide a framework for further research into more efficient and sustainable extraction methods. The developed model and its validation represent a step forward in the practical application of electrodialysis in REE processing, offering substantial benefits for the critical materials sector.

2.
Water Res ; 154: 125-135, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30782554

RESUMEN

A novel pyrolusite fluidized bed (PFB) contactor, which we recently developed for dissolved manganese (Mn(II)) removal through surface adsorption and subsequent oxidation by free chlorine, was modeled in this study. The hydrodynamic behavior of the filter media and water in the fluidized bed was described by the axial dispersion model. The model incorporated the effects of axial mixing in the liquid and solid phases, mass transfer resistance in a laminar fluid boundary layer surrounding a media grain, and a second order oxidation rate expression. The experimental data from lab-scale and field pilot-scale contactors was adopted for the model development and its validation. For the former, the data was employed to estimate the oxidation rate constant, the mass transfer coefficient, and the axial solid phase dispersion coefficient for the model. The model simulations matched the experimental data with less than 20% error across a wide range of Mn(II) and free chlorine concentrations and hydraulic loading rates that might be encountered in a drinking water treatment plant. The sensitivity analysis showed that the time to breakthrough is most sensitive to the adsorption isotherm constants and the oxidation rate constant. These observations indicate that the alluded parameters mainly control the performance of the PFB contactor as well as the process stability. Finally, a sample application of the model to acquire operational inputs was illustrated by analyzing the effect of free chlorine concentration on Mn(II) removal performance and breakthrough time within a PFB contactor.


Asunto(s)
Manganeso , Purificación del Agua , Adsorción , Compuestos de Manganeso , Óxidos
3.
Water Res ; 113: 50-61, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28189996

RESUMEN

Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively.


Asunto(s)
Agua Potable , Manganeso , Hierro , Membranas Artificiales , Ultrafiltración , Purificación del Agua
4.
Water Res ; 49: 475-83, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24183400

RESUMEN

The purpose of this paper is to introduce a pyrolucite fluidized-bed reactor (PFBR) as a potential drinking water process to treat groundwater containing high levels of dissolved manganese (Mn(II)) (0.5-3 mg/L) and reduce its concentration to <0.02 mg/L in treated water. A pilot-scale study was conducted under dynamic conditions using synthetic groundwater (SGW), to elucidate the effect of operational conditions and groundwater composition on manganese (Mn) removal achieved by the PFBR. Results demonstrated almost complete Mn removal (close to 100%) in less than 1 min under all tested operational conditions (influent Mn concentration of 0.5-3 mg/L, calcium (Ca(2+)) hardness of 0-200 mg CaCO3/L, pH of 6.2-7.8, temperature of 9 & 23 °C and high hydraulic loading rate (HLR) of 24-63 m/h (i.e., bed expansion of 0-30%)). Improved Mn removal profile was achieved at higher water temperature. Also, the results showed that adsorption of Mn(II) onto pyrolucite and subsequent slower surface oxidation of sorbed Mn(II) was the only mechanism responsible for Mn removal while direct oxidation of Mn(II) by free chlorine did not occur even at high concentrations of Mn(II) and free chlorine and elevated temperatures. Higher average mass transfer coefficient and consequently adsorption rate was achieved at elevated HLR. Increasing effluent free chlorine residuals from 1.0 to 2.0-2.6 mg Cl2/L allowed increasing the operation time needed for media regeneration from 6 days to >12 days. Turbidity was maintained around 0.2 NTU during the entire test periods indicating good capture of MnOx colloids within the PFBR.


Asunto(s)
Agua Subterránea/química , Compuestos de Manganeso/química , Manganeso/aislamiento & purificación , Minerales/química , Óxidos/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Adsorción , Cloro/química , Concentración de Iones de Hidrógeno , Factores de Tiempo , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA