Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 1): 130120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350581

RESUMEN

This study investigates the viscoelastic behavior, gelling properties, and structural characteristics of Deccan hemp seed protein (DHSP) to overcome limitations in its application in food formulations. Small amplitude oscillatory shear measurements were employed to investigate the impact of protein concentration, pH, ionic concentration, and temperature on DHSP's rheological features. The study revealed that the 20 % protein dispersion had the highest storage modulus (G') and yield stress at 63.96 ± 0.23 Pa and 0.61 Pa, respectively. DHSP dispersion exhibited pseudo-plastic behavior across various conditions. The gelling performance was higher at pH 4 and 8 and at ionic concentration in the range of 0.1 M - 0.5 M. Gelation time and temperature were observed from the temperature ramp test. Structural characterizations, including fluorescence spectroscopy, circular dichroism spectra, FTIR spectra, SEM, AFM images, zeta potential analysis, and DSC, provided insights into DHSP's tertiary and secondary conformation, surface characteristics, and thermal properties. Notably, the study highlighted DHSP's exceptional rheological properties, making it a promising gelling material for the food and nutraceutical industries. The findings also offer new insights into DHSP's structural characteristics, suggesting potential applications in food packaging and product development within the food industry.


Asunto(s)
Cannabis , Hibiscus , Temperatura , Geles , Concentración de Iones de Hidrógeno , Reología
2.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36218326

RESUMEN

The recent trend in consumption of plant-based protein over animal protein opens up a new avenue for sustainable agriculture practice, less environmental impact and greenhouse gas emission. The modification of plant-based proteins by novel non-thermal technologies includes the structural transformation followed by the modulation of their functional properties that are exploited to develop a protein ingredient system for application in food formulation. This review explores the impact of non-thermal process technologies on structural modification of plant proteins followed by improvement in protein's function in food formulation. Novel concepts articulating the impact of non-thermal technologies on structural and functional modification of plant proteins affecting it's digestibility and bioavailability are addressed. Limitations and prospects of applying non-thermal technologies in developing an alternative plant-based protein food system are also summarized. Non-thermal processes are considered as the emerging technologies that results in conformational changes in secondary, tertiary and quaternary structure of plant proteins which helps in modification of functional properties without jeopardizing the organoleptic properties and bioactivity of the protein. However, extensive future study is needed to optimize the non-thermal process parameters along with the finding of new protein sources to achieve healthy and sustainable plant-based food system.


• Demand and consumption of plant proteins are increasing compared to animal proteins.• Non-thermal technologies changes protein structure and enhances the bio-functional properties.• Structural and functional modification influences the digestive properties of plant proteins.• Limitations and challenges of non-thermal technologies are addressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA