Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 20(4): 881-899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38429620

RESUMEN

Biomedical research has long relied on animal models to unravel the intricacies of human physiology and pathology. However, concerns surrounding ethics, expenses, and inherent species differences have catalyzed the exploration of alternative avenues. The contemporary alternatives to traditional animal models in biomedical research delve into three main categories of alternative approaches: in vitro models, in vertebrate models, and in silico models. This unique approach to artificial intelligence and machine learning has been a keen interest to be used in different biomedical research. The main goal of this review is to serve as a guide to researchers seeking novel avenues for their investigations and underscores the importance of considering alternative models in the pursuit of scientific knowledge and medical breakthroughs, including showcasing the broad spectrum of modern approaches that are revolutionizing biomedical research and leading the way toward a more ethical, efficient, and innovative future. Models can insight into cellular processes, developmental biology, drug interaction, assessing toxicology, and understanding molecular mechanisms.


Asunto(s)
Investigación Biomédica , Animales , Humanos , Modelos Animales , Inteligencia Artificial
2.
Biochem Pharmacol ; 215: 115723, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536473

RESUMEN

Diabetic neuropathy is a neuro-degenerative disorder that encompasses numerous factors that impact peripheral nerves in the context of diabetes mellitus (DM). Diabetic peripheral neuropathy (DPN) is very prevalent and impacts 50% of diabetic patients. DPN is a length-dependent peripheral nerve lesion that primarily causes distal sensory loss, discomfort, and foot ulceration that may lead to amputation. The pathophysiology is yet to be fully understood, but current literature on the pathophysiology of DPN revolves around understanding various signaling cascades involving the polyol, hexosamine, protein-kinase C, AGE, oxidative stress, and poly (ADP ribose) polymerase pathways. The results of research have suggested that hyperglycemia target Schwann cells and in severe cases, demyelination resulting in central and peripheral sensitization is evident in diabetic patients. Various diagnostic approaches are available, but detection at an early stage remains a challenge. Traditional analgesics and opioids that can be used "as required" have not been the mainstay of treatment thus far. Instead, anticonvulsants and antidepressants that must be taken routinely over time have been the most common treatments. For now, prolonging life and preserving the quality of life are the ultimate goals of diabetes treatment. Furthermore, the rising prevalence of DPN has substantial consequences for occupational therapy because such therapy is necessary for supporting wellness, warding off other chronic-diseases, and avoiding the development of a disability; this is accomplished by engaging in fulfilling activities like yoga, meditation, and physical exercise. Therefore, occupational therapy, along with palliative therapy, may prove to be crucial in halting the onset of neuropathic-symptoms and in lessening those symptoms once they have occurred.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Hiperglucemia , Humanos , Neuropatías Diabéticas/tratamiento farmacológico , Calidad de Vida , Hiperglucemia/complicaciones , Transducción de Señal , Proteína Quinasa C/metabolismo , Diabetes Mellitus/tratamiento farmacológico
3.
Curr Drug Metab ; 24(6): 406-421, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519199

RESUMEN

One of the key factors contributing to mortality and morbidity globally is infectious ailments. According to recent statistics from WHO, amplified antimicrobial resistance occurrence among bacteria signifies the utmost threat to global public health. Bacteria have developed various strategies to resist antimicrobials, including enzymatic inactivation of antibiotics, drug efflux, modifications of the antibiotic molecule or chemical alteration of the antibiotic, limited drug uptake, etc. Furthermore, the inefficiency of antimicrobial drugs against resistant bacteria due to low solubility, instability, and associated side effects augments challenges to combat these resistant pathogens. This has attracted the attention of researchers to create nano-delivery and targeting techniques. This review presents an overview of antimicrobial resistance (AMR), its various subtypes, as well as mechanisms involved in AMR. This review also describes current strategies and applications of various nanocarriers, including nanoparticles, liposomes, lipid-based nanoparticles, micelles, and polymeric nanoparticles.

4.
Chem Biodivers ; 20(2): e202200847, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36721068

RESUMEN

Cancer growth, annexation, and metastatic spread are all aided by the formation of new blood vessels (angiogenesis). The commencement of the VEGF pathway leads to signal transduction that enhances endothelial cell survival, relocation, and divergence from pre-existing vasculature. The ability of solid malignancies to bloom and spread depends critically on their ability to establish their independent blood circulation (tumor angiogenesis). VEGFR is a major receptor tyrosine kinase that regulates angiogenesis, cell growth, and metastasis, diminishing apoptosis, cytoskeletal function, and other biological processes VEGFR has proven to be a remarkable focus for a variety of anticancer medicines in clinical studies. This Review explores the development of anti-VEGF-based antiangiogenic therapies having different scaffolds. This review had focused on SAR and docking studies of previously reported molecules.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Simulación del Acoplamiento Molecular , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA