Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(12): 2905-2921, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38503566

RESUMEN

Solvation plays important roles in controlling the thermodynamic and kinetic aspects of chemical reactions. The conventional approaches to treat solvation via electronic structure methods are likely to become inadequate, when the reacting solutes have strong electrostatic and hydrogen bonding interactions with the solvent and undergo significant structural changes during the course of the reaction. In this article, we present evidence of such solvent and structural effects in the computational study of the Cu(I) transfer reaction between thiolate-based chelators dithiobutylamine (DTBA) and dithiotheritol (DTT) in water, inspired from biological copper trafficking phenomena. We propose a general solution to the problem by combining classical molecular dynamics (MD) simulations of the bulk system and static quantum chemistry calculations. The fluctuating solvation shell was estimated from MD, and energetics was assessed by averaging QM energies of a series of molecular clusters constructed from the MD snapshots. Applying this approach, we propose a reaction pathway with estimates of relative intermediate stabilities and barriers, which suggest the overall reaction to be reversible in nature and likely to go through both two and three coordinated intermediates, confirming previous studies of similar protein analogues. An interesting fact that emerged from our study was the strong indication that the rate-determining step is the deprotonation of initial thiol bound Cu(I) complex, without involving any Cu(I)-S bonds. The proposed method will lead to a better treatment of solvations, and these mechanistic insights will aid our understanding of biological copper(I) trafficking.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37044113

RESUMEN

Electric field control of magnetodynamics in magnetoelectric (ME) heterostructures has been the subject of recent interest due to its fundamental complexity and promising applications in room temperature devices. The present work focuses on the tuning of magnetodynamic parameters of epitaxially grown ferromagnetic (FM) La0.7Sr0.3MnO3(LSMO) on a ferro(piezo)electric (FE) Pb(Mg0.33Nb0.67)O3-PbTiO3(PMN-PT) single crystal substrate. The uniaxial magnetic anisotropy of LSMO on PMN-PT confirms the ME coupling at the FM/FE heterointerface. The magnitude of the Gilbert damping constant (α) of this uniaxial LSMO film measured along the hard magnetic axis is significantly small compared to the easy axis. Furthermore, a marked decrease in the α values of LSMO at positive and negative electrical remanence of PMN-PT is observed, which is interpreted in the framework of strain induced spin dependent electronic structure. The present results clearly encourage the prospects of electric field controlled magnetodynamics, thereby realising the room temperature spin-wave based device applications with ultra-low power consumption.

3.
J Phys Chem B ; 126(46): 9476-9492, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36350248

RESUMEN

Spontaneous self-assembly of peptides has been at the forefront of supramolecular chemistry and materials science research over the last two decades. Despite the wealth of information on the morphology of the assembled objects, atomic resolution details of molecular arrangements inside them are largely unknown. In this paper, we investigated non-covalent assemblies of zwitterionic l-phenylalanine tripeptides in water using all-atom explicit-solvent molecular dynamics computer simulations. Our studies produced atomistic pictures of spontaneously assembled nanofibers composed of hundreds of peptide molecules. The dimensions of the nanofibers varied from 10 to 18 nm, with irregular helical twists along the long axes. Previously published experimental data, acquired under similar conditions, provided direct validation of the fibrous morphology and indirect support for the non-trivial helicity observed in our simulations. Quantitative analyses of peptide-water and peptide-peptide interactions revealed heterogeneous local environments of molecules across the nanometer length scales. The combination of electrostatic, hydrogen bonding, van der Waals, and hydrophobic interactions, adopted by a single molecule, was dependent on its relative position inside the fiber. Despite the presence of three hydrophobic phenyl groups, very few molecules were found to be completely shielded from the surrounding water, indicating a subtle role of the hydrophobic effect. Limited conformational flexibility of the tripeptide, along with bare electrostatic interactions, appeared to play a crucial role in the emergence of fibrous morphology of the nanostructures. Our analyses led us to formulate plausible qualitative explanations of the assembly behavior in terms of thermodynamic driving forces and kinetic considerations. We established a clear relationship between details of chemical interactions operating within few molecules and characteristics of the self-assembled states at much longer length scales.


Asunto(s)
Nanofibras , Nanofibras/química , Péptidos/química , Simulación de Dinámica Molecular , Enlace de Hidrógeno , Agua
4.
Nanotechnology ; 31(33): 335716, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32374297

RESUMEN

The present work reports the effect of particle size and shape of CoFe2O4 (CFO) nanoparticles on magnetic properties and their use in device applications as permanent magnets at room temperature. A set of CFO samples with different particle sizes and shapes were synthesized via the polymeric method by sintering at temperatures ranging from 300 °C to 1200 °C. These materials were characterized structurally by x-ray diffraction, morphologically by scanning electron microscopy, and microstructurally by transmission electron microscopy. The morphology of these CFO samples shows size-dependent shapes like spherical, pyramidal, lamellar, octahedral and truncated octahedral shapes for the particle sizes ranging from 7 to 780 nm with increasing sintering temperature. The emergence of magnetic properties was investigated as a function of particle size and shape with a special emphasis on permanent magnet applications at low and room temperatures. The values of saturation and remanent magnetization were found to increase monotonously with a particle size up to 40 nm and from thereafter they were found to remain almost constant. The other magnetic parameters such as coercivity, squareness ratio, anisotropy constant and maximum energy product ([Formula: see text]) were observed to increase up to 40 nm and then decreased thereafter as a function of particle size. The underlying mechanism responsible for the observed behavior of the magnetic parameters as a function of particle size was discussed in the light of coherent rotation, domain wall motion and shape induced demagnetization effects. The significant values of [Formula: see text] - the figure of merit of permanent magnets - observed for single domain particles (particularly, 14 nm and 21 nm) were found to have suitability in permanent magnetic technology.

5.
J Mol Biol ; 430(24): 5050-5065, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30539761

RESUMEN

The calcium pump of the sarcoplasmic reticulum (SERCA) is an ATP-driven active transporter of Ca2+ ions that functions via an "alternating-access" cycle mechanism. In each cycle, SERCA transports two Ca2+ ions toward the lumen of the sarcoplasmic reticulum and two to three protons to the cytoplasm. How the latter conformational transition is coupled to cytoplasmic release of protons remains poorly understood. The present computational study shows how the mechanism of proton countertransport is coupled to the alternating access gating process in SERCA. Molecular dynamics simulation trajectories are generated starting from a series of configurations taken along the E2 to E1 transition pathway determined by the string method with swarms-of-trajectories. Simulations of different protonation configurations at the binding sites reveal how deprotonation events affect the opening of the cytoplasmic gate. The results show that there is a strong coupling between the chronological order of deprotonation, the entry of water molecules into the TM region, and the opening of the cytoplasmic gate. Deprotonation of E309 and E771 is sequential with E309 being the first to lose the proton. The deprotonation promotes the opening of the cytoplasmic gate but leads to a productive gating transition only if it occurs after the transmembrane domain has reached an intermediate conformation. Deprotonation of E309 and E771 is unproductive when it occurs too early because it causes the re-opening of the luminal gate.


Asunto(s)
Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/metabolismo , Sitios de Unión , Citoplasma/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Protones
6.
J Mol Biol ; 429(5): 647-666, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28093226

RESUMEN

Ion pumps are integral membrane proteins responsible for transporting ions against concentration gradients across biological membranes. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), a member of the P-type ATPases family, transports two calcium ions per hydrolyzed ATP molecule via an "alternating-access" mechanism. High-resolution crystallographic structures provide invaluable insight on the structural mechanism of the ion pumping process. However, to understand the molecular details of how ATP hydrolysis is coupled to calcium transport, it is necessary to gain knowledge about the conformational transition pathways connecting the crystallographically resolved conformations. Large-scale transitions in SERCA occur at time-scales beyond the current reach of unbiased molecular dynamics simulations. Here, we overcome this challenge by employing the string method, which represents a transition pathway as a chainofstates linking two conformational endpoints. Using a multiscale methodology, we have determined all-atom transition pathways for three main conformational transitions responsible for the alternating-access mechanism. The present pathways provide a clear chronology and ordering of the key events underlying the active transport of calcium ions by SERCA. Important conclusions are that the conformational transition that leads to occlusion with bound ATP and calcium is highly concerted and cooperative, the phosphorylation of Asp351 causes areorganization of the cytoplasmic domains that subsequently drives the opening of the luminal gate, and thereclosing of luminal gate induces a shift in the cytoplasmic domains that subsequently enables the dephosphorylation of Asp351-P. Formation of transient residue-residue contacts along the conformational transitions predicted by the computations provide an experimental route to test the general validity of the computational pathways.


Asunto(s)
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Biología Computacional , Cristalografía , Cristalografía por Rayos X , Transporte Iónico , Simulación de Dinámica Molecular , Fosforilación , Conformación Proteica
7.
Nat Commun ; 6: 7622, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26205423

RESUMEN

The Na(+)/K(+)-ATPase restores sodium (Na(+)) and potassium (K(+)) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na(+) ions are released, followed by the binding and occlusion of two K(+) ions. While the mechanisms of Na(+) release have been well characterized by the study of transient Na(+) currents, smaller and faster transient currents mediated by external K(+) have been more difficult to study. Here we show that external K(+) ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K(+) gating different from that of Na(+) occlusion.


Asunto(s)
Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Decapodiformes , Simulación de Dinámica Molecular , Técnicas de Placa-Clamp
8.
PLoS Comput Biol ; 10(4): e1003521, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699246

RESUMEN

Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Adenilato Quinasa/química , Sistema de Transporte de Aminoácidos X-AG/química , Proteínas Portadoras/química , Leucina/química , Retículo Sarcoplasmático/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
9.
J Chem Phys ; 136(19): 194113, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22612086

RESUMEN

The multiscale coarse-graining (MS-CG) method is a method for determining the effective potential energy function for a coarse-grained (CG) model of a molecular system using data obtained from molecular dynamics simulation of the corresponding atomically detailed model. The coarse-grained potential obtained using the MS-CG method is a variational approximation for the exact many-body potential of mean force for the coarse-grained sites. Here we propose a new numerical algorithm with noise suppression capabilities and enhanced numerical stability for the solution of the MS-CG variational problem. The new method, which is a variant of the elastic net method [Friedman et al., Ann. Appl. Stat. 1, 302 (2007)], allows us to construct a large basis set, and for each value of a so-called "penalty parameter" the method automatically chooses a subset of the basis that is most important for representing the MS-CG potential. The size of the subset increases as the penalty parameter is decreased. The appropriate value to choose for the penalty parameter is the one that gives a basis set that is large enough to fit the data in the simulation data set without fitting the noise. This procedure provides regularization to mitigate potential numerical problems in the associated linear least squares calculation, and it provides a way to avoid fitting statistical error. We also develop new basis functions that are similar to multiresolution Haar functions and that have the differentiability properties that are appropriate for representing CG potentials. We demonstrate the feasibility of the combined use of the elastic net method and the multiresolution basis functions by performing a variational calculation of the CG potential for a relatively simple system. We develop a method to choose the appropriate value of the penalty parameter to give the optimal basis set. The combined effect of the new basis functions and the regularization provided by the elastic net method opens the possibility of using very large basis sets for complicated CG systems with many interaction potentials without encountering numerical problems in the variational calculation.


Asunto(s)
Modelos Teóricos , Simulación de Dinámica Molecular , Algoritmos , Modelos Lineales , Modelos Químicos
10.
J Chem Phys ; 136(19): 194114, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22612087

RESUMEN

The multiscale coarse-graining (MS-CG) method is a method for constructing a coarse-grained (CG) model of a system using data obtained from molecular dynamics simulations of the corresponding atomically detailed model. The formal statistical mechanical derivation of the method shows that the potential energy function extracted from an MS-CG calculation is a variational approximation for the true potential of mean force of the CG sites, one that becomes exact in the limit that a complete basis set is used in the variational calculation if enough data are obtained from the atomistic simulations. Most applications of the MS-CG method have employed a representation for the nonbonded part of the CG potential that is a sum of all possible pair interactions. This approach, despite being quite successful for some CG models, is inadequate for some others. Here we propose a systematic method for including three body terms as well as two body terms in the nonbonded part of the CG potential energy. The current method is more general than a previous version presented in a recent paper of this series [L. Larini, L. Lu, and G. A. Voth, J. Chem. Phys. 132, 164107 (2010)], in the sense that it does not make any restrictive choices for the functional form of the three body potential. We use hierarchical multiresolution functions that are similar to wavelets to develop very flexible basis function expansions with both two and three body basis functions. The variational problem is solved by a numerical technique that is capable of automatically selecting an appropriate subset of basis functions from a large initial set. We apply the method to two very different coarse-grained models: a solvent free model of a two component solution made of identical Lennard-Jones particles and a one site model of SPC/E water where a site is placed at the center of mass of each water molecule. These calculations show that the inclusion of three body terms in the nonbonded CG potential can lead to significant improvement in the accuracy of CG potentials and hence of CG simulations.

11.
J Chem Phys ; 136(19): 194115, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22612088

RESUMEN

The multiscale coarse-graining (MS-CG) method uses simulation data for an atomistic model of a system to construct a coarse-grained (CG) potential for a coarse-grained model of the system. The CG potential is a variational approximation for the true potential of mean force of the degrees of freedom retained in the CG model. The variational calculation uses information about the atomistic positions and forces in the simulation data. In principle, the resulting MS-CG potential will be an accurate representation of the true CG potential if the basis set for the variational calculation is complete enough and the canonical distribution of atomistic states is well sampled by the data set. In practice, atomistic configurations that have very high potential energy are not sampled. As a result there usually is a region of CG configuration space that is not sampled and about which the data set contains no information regarding the gradient of the true potential. The MS-CG potential obtained from a variational calculation will not necessarily be accurate in this unsampled region. A priori considerations make it clear that the true CG potential of mean force must be very large and positive in that region. To obtain an MS-CG potential whose behavior in the sampled region is determined by the atomistic data set, and whose behavior in the unsampled region is large and positive, it is necessary to intervene in the variational calculation in some way. In this paper, we discuss and compare two such methods of intervention, which have been used in previous MS-CG calculations for dealing with nonbonded interactions. For the test systems studied, the two methods give similar results and yield MS-CG potentials that are limited in accuracy only by the incompleteness of the basis set and the statistical error of associated with the set of atomistic configurations used. The use of such methods is important for obtaining accurate CG potentials.

12.
J Chem Phys ; 132(16): 164106, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20441257

RESUMEN

The multiscale coarse-graining (MS-CG) method is a method for determining the effective potential energy function for a coarse-grained (CG) model of a system using the data obtained from molecular dynamics simulation of the corresponding atomically detailed model. The MS-CG method, as originally formulated for systems at constant volume, has previously been given a rigorous statistical mechanical basis for the canonical ensemble. Here, we propose and test a version of the MS-CG method suitable for the isothermal-isobaric ensemble. The method shows how to construct an effective potential energy function for a CG system that generates the correct volume fluctuations as well as correct distribution functions in the configuration space of the CG sites. The formulation of the method requires introduction of an explicitly volume dependent term in the potential energy function of the CG system. The theory is applicable to simulations with isotropic volume fluctuations and cases where both the atomistic and CG models do not have any intramolecular constraints, but it is straightforward to extend the theory to more general cases. The present theory deals with systems that have short ranged interactions. (The extension to Coulombic forces using Ewald methods requires additional considerations.) We test the theory for constant pressure MS-CG simulations of a simple model of a solution. We show that both the volume dependent and the coordinate dependent parts of the potential are transferable to larger systems than the one used to obtain these potentials.

13.
J Chem Theory Comput ; 6(3): 954-65, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26613319

RESUMEN

The multiscale coarse-graining (MS-CG) method obtains CG interactions from atomistic configurations, as demonstrated previously for a variety of soft matter and biological systems. In this article, recent advances in MS-CG algorithms are described, and a recently developed computer program MSCGFM for MS-CG calculations is introduced. The algorithms enhance the efficiency and stability of MS-CG computations, and these algorithms are incorporated into the MSCGFM program. As a result of these efforts, MS-CG calculations on large scale systems such as peptide and proteins can become tractable, and the numerical stability of solutions for ill-posed MS-CG problems can be regularized efficiently. Various parallelization strategies are also discussed.

14.
J Chem Phys ; 131(3): 034102, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19624176

RESUMEN

The multiscale coarse-graining (MS-CG) method, proposed by Izvekov and Voth [J. Phys. Chem. B 109, 2469 (2005); Izvekov and VothJ. Chem. Phys. 123, 134105 (2005)], is a method for determining the effective potential energy function for a coarse-grained model of a fluid using data obtained from molecular dynamics (MD) simulation of the corresponding atomically detailed model. The method has been given a rigorous statistical mechanical basis [Noid et al. J. Chem. Phys. 128, 244114 (2008); Noid et al., J. Chem. Phys. 128, 244115 (2008)]. The coarse-grained (CG) potentials obtained using the MS-CG method are an approximate variational solution for the exact many-body potential of mean force for the coarse-grained sites. In this paper we apply this method to study the many-body potential of mean force among solutes in a simple model of a solution of Lennard-Jones particles. We use a new set of basis functions for the variational calculation that is useful when the coarse-grained potential is approximately equal to an arbitrarily complicated pairwise additive, central interaction among the sites of the coarse-grained model. For this model, pairwise additivity of the many-body potential of mean force is a very good approximation when the solute concentration is low, and it becomes less accurate for high concentrations, indicating the importance of many-body contributions to the coarse-grained potential. The best possible pairwise additive CG potential of the solute particles is found to be quite long ranged for all concentrations except those for which the mole fraction of solute is very close to unity. We discuss strategies for construction of short-ranged potentials for efficient but accurate CG MD simulation. We also discuss how the choice of basis functions for the variational calculation can be used to provide smoothing of the calculated CG potential function to overcome statistical sampling error in the atomistic simulation data used for the generation of the potential.

15.
J Chem Phys ; 128(24): 244114, 2008 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-18601324

RESUMEN

Coarse-grained (CG) models provide a computationally efficient method for rapidly investigating the long time- and length-scale processes that play a critical role in many important biological and soft matter processes. Recently, Izvekov and Voth introduced a new multiscale coarse-graining (MS-CG) method [J. Phys. Chem. B 109, 2469 (2005); J. Chem. Phys. 123, 134105 (2005)] for determining the effective interactions between CG sites using information from simulations of atomically detailed models. The present work develops a formal statistical mechanical framework for the MS-CG method and demonstrates that the variational principle underlying the method may, in principle, be employed to determine the many-body potential of mean force (PMF) that governs the equilibrium distribution of positions of the CG sites for the MS-CG models. A CG model that employs such a PMF as a "potential energy function" will generate an equilibrium probability distribution of CG sites that is consistent with the atomically detailed model from which the PMF is derived. Consequently, the MS-CG method provides a formal multiscale bridge rigorously connecting the equilibrium ensembles generated with atomistic and CG models. The variational principle also suggests a class of practical algorithms for calculating approximations to this many-body PMF that are optimal. These algorithms use computer simulation data from the atomically detailed model. Finally, important generalizations of the MS-CG method are introduced for treating systems with rigid intramolecular constraints and for developing CG models whose equilibrium momentum distribution is consistent with that of an atomically detailed model.


Asunto(s)
Modelos Químicos , Simulación por Computador , Modelos Estadísticos , Distribuciones Estadísticas
16.
Langmuir ; 21(6): 2408-13, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15752032

RESUMEN

Development of simple and reliable protocols for the synthesis of organically soluble catalytically active metal nanoparticles is an important aspect of research in nanomaterials. We demonstrate herein the formation of Pd nanoparticles by reduction of aqueous Pd(NO(3))(2) by photoexcited Keggin ions (phosphotungstate anions). This results in the formation of Pd nanoparticles capped with with Keggin ions that render the particles negatively charged. The Keggin ion capped Pd nanoparticles may then be phase transferred into nonpolar organic solvents such as toluene by electrostatic complexation with cationic surfactants such as octadecylamine at the liquid-liquid interface. This results in a new class of catalyst wherein both the Pd core and Keggin ion shell may be used in a range of catalytic reactions leading to a truly multifunctional catalyst dispersible in organic solvents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA