Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998731

RESUMEN

Regular wave patterns were created by a 2 kV gallium ion on Si(111) monocrystals at incidence angles between 60° and 80° with respect to the surface normal. The characteristic wavelength and surface roughness of the structured surfaces were determined to be between 35-75 nm and 0.5-2.5 nm. The local slope distribution of the created periodic structures was also studied. These topography results were compared with the predictions of the Bradley-Harper model. The amorphised surface layers were investigated by a spectroscopic ellipsometer. According to the results, the amorphised thicknesses were changed in the range of 8 nm to 4 nm as a function of ion incidence angles. The reflectance of the structured surfaces was simulated using ellipsometric results and measured with a reflectometer. Based on the spectra, a controlled modification of reflectance within 45% and 50% can be achieved on Si(111) at 460 nm wavelength. According to the measured results, the characteristic sizes (periodicity and amplitude) and optical property of silicon can be fine-tuned by low-energy focused ion irradiation at the given interval of incidence angles.

2.
Nat Commun ; 13(1): 1975, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418187

RESUMEN

Compression experiments on micron-scale specimens and acoustic emission (AE) measurements on bulk samples revealed that the dislocation motion resembles a stick-slip process - a series of unpredictable local strain bursts with a scale-free size distribution. Here we present a unique experimental set-up, which detects weak AE waves of dislocation slip during the compression of Zn micropillars. Profound correlation is observed between the energies of deformation events and the emitted AE signals that, as we conclude, are induced by the collective dissipative motion of dislocations. The AE data also reveal a two-level structure of plastic events, which otherwise appear as a single stress drop. Hence, our experiments and simulations unravel the missing relationship between the properties of acoustic signals and the corresponding local deformation events. We further show by statistical analyses that despite fundamental differences in deformation mechanism and involved length- and time-scales, dislocation avalanches and earthquakes are essentially alike.

3.
J Appl Crystallogr ; 54(Pt 1): 280-286, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33833653

RESUMEN

During neutron irradiation of metals, owing to the enhanced number of vacancies and interstitial atoms, the climb motion of dislocations becomes significant at room temperature, leading to a recrystallization of the material. Moreover, the vacancies and interstitial atoms tend to form prismatic dislocation loops that play a crucial role in the plastic properties of the materials. X-ray peak profile analysis is an efficient nondestructive method to determine the properties of dislocation microstructure. In the first half of this article, the foundation of the asymptotic peak broadening theory and the related restricted-moments peak-evaluation method is summarized. After this, the microstructural parameters obtained by X-ray peak profile analysis are reported for irradiated E110 and E110G Zr alloys used as cladding material in the nuclear industry.

4.
Materials (Basel) ; 14(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669106

RESUMEN

The present investigation is directed to phase transitions in the equimolar NiCoFeCrGa high entropy alloy, which is a mixture of face-centered cubic (FCC) and body-centered cubic (BCC) crystalline phases. The microstructure of the samples was investigated by using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), transmission electron microscopy-based energy-dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS), as well as X-ray diffraction (XRD) measurements. Based on the phases observed in different temperature ranges, a sequence of the phase transitions can be established, showing that in a realistic process, when freely cooling the sample with the furnace from high to room temperature, a microstructure having spinodal-like decomposition can also be expected. The elemental mapping and magnetic behaviors of this decomposed structure are also studied.

5.
Microsc Microanal ; 23(6): 1076-1081, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29037270

RESUMEN

Plastic deformation of micron-scale crystalline materials differs considerably from bulk samples as it is characterized by stochastic strain bursts. To obtain a detailed picture of the intermittent deformation phenomena, numerous micron-sized specimens must be fabricated and tested. An improved focused ion beam fabrication method is proposed to prepare non-tapered micropillars with excellent control over their shape. Moreover, the fabrication time is less compared with other methods. The in situ compression device developed in our laboratory allows high-accuracy sample positioning and force/displacement measurements with high data sampling rates. The collective avalanche-like motion of the dislocations is observed as stress decreases on the stress-strain curves. An acoustic emission (AE) technique was employed for the first time to study the deformation behavior of micropillars. The AE technique provides important additional in situ information about the underlying processes during plastic deformation and is especially sensitive to the collective avalanche-like motion of the dislocations observed as the stress decreases on the deformation curves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA