Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(34): 36847-36856, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220474

RESUMEN

The drive to improve the safety and efficacy of radiotherapies for cancers has prompted the development of nanomaterials that can locally amplify the radiation dose at a tumor without damaging the surrounding healthy tissue. Gold nanoparticles (Au NPs), in particular, exhibit promising radiosensitizing properties under kilovolt X-ray exposure, although the precise mechanism behind this enhancement is not fully understood. While most studies recognize the involvement of factors such as core composition, size, shape, and ligand chemistry in the effectiveness of Au NPs for radiation-induced cancer treatment, there is a scarcity of direct assessments that connect the photophysical properties of the nanomaterial with the observed cellular or biological outcomes. Despite previous evidence of low-energy electron (LEE) emission from Au NPs and their potential to initiate biological damage, to our knowledge, no studies directly correlate the secondary LEE emission with radiation-induced cell death. In this study we assessed Au NPs functionalized with polyethylene glycol (PEG) ligands of varying molecular weights and lengths (1, 5, and 20 kDa PEG) as potential radiosensitizers of A549 lung cancer cells using kilovolt X-ray source potentials (33-130 kVp). We assessed NP internalization using mass cytometry, radiation dose enhancement using clonogenic survival assays, and secondary LEE emission using a retarding field analyzer. Results reveal a statistically significant difference in cellular uptake and radiation dose enhancement for 5 kDa PEG-Au NPs compared to formulations using 1 and 20 kDa PEG, while analysis of secondary LEE emission spectra demonstrated that differences in the length of the PEG ligand did not cause statistically significant attenuation of secondary LEE flux. Consequently, we inferred increased cellular uptake of NPs to be the cause for the observed enhancement in radiosensitivity for 5 kDa PEGylated Au NPs. The approach used in this study establishes a more complete workflow for designing and characterizing the performance of nanomaterial radiosensitizers, allowing for quantification of secondary LEEs and cellular uptake, and ultimately correlation with localized dose enhancement that leads to cell death.

2.
Chem Commun (Camb) ; 60(64): 8383-8386, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38958572

RESUMEN

The origin of the enantiospecific decomposition of L- and D-tartaric acid on chiral Cu surfaces is elucidated on a structure-spread domed Cu(110) crystal by spatially resolved XPS and atomic-scale STM imaging. Extensive enantiospecific surface restructuring leads to the formation of surfaces vicinal to Cu(14,17,2) which are responsible for the enantiospecificity.

3.
ACS Nano ; 17(6): 5799-5807, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36877997

RESUMEN

Recent experiments have demonstrated an intriguing phenomenon in which adsorption of a nonracemic mixture of aspartic acid (Asp) enantiomers onto an achiral Cu(111) metal surface leads to autoamplification of surface enantiomeric excess, ees, to values well above those of the impinging gas mixtures, eeg. This is particularly interesting because it demonstrates that a slightly nonracemic mixture of enantiomers can be further purified simply by adsorption onto an achiral surface. In this work, we seek a deeper understanding of this phenomena and apply scanning tunneling microscopy to image the overlayer structures formed by mixed monolayers of d- and l-Asp on Cu(111) over the full range of surface enantiomeric excess; ees = -1 (pure l-Asp) through ees = 0 (racemic dl-Asp) to ees = 1 (pure d-Asp). Both enantiomers of three chiral monolayer structures are observed. One is a conglomerate (enantiomerically pure), another is a racemate (equimolar mixture of d- and l-Asp); however, the third structure accommodates both enantiomers in a 2:1 ratio. Such solid phases of enantiomer mixtures with nonracemic composition are rare in 3D crystals of enantiomers. We argue that, in 2D, the formation of chiral defects in a lattice of one enantiomer is easier than in 3D, simply because the stress associated with the chiral defect in a 2D monolayer of the opposite enantiomer can be dissipated by strain into the space above the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA