Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e33002, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027584

RESUMEN

The rapid evolution of flexible optoelectronic devices in consumer markets, such as solar cells, photonic skins, displays, lighting, supercapacitors, and smart windows, has spurred global innovation in the design and development of Stretchable Transparent Conducting Electrode (STCE) materials. These materials, which combine the flexibility of organic materials with the functionality of optoelectronic components, have drawn a lot of attention because of their potential uses in a variety of disciplines, such as medical equipment, wearable electronics, and soft robotics. Recent advancements in material science and device design have significantly improving performance, durability, and functionality of these stretchable organic optoelectronic devices. Furthermore, flexible conducting transparent electrodes play an essential role in a wide range of flexible and transparent electronics, including touch screens, displays, and solar cells. Traditional materials like indium tin oxide (ITO) electrodes, while effective, and constrained by their fragility and high cost. Recent innovations in alternative materials, such as metal mesh, nanowires, conducting polymers and graphene have ushered in a new era of affordable, flexible, and transparent conductive electrodes. Materials like graphene, metal nanowires, metallic grids, metal meshes, and dielectric-metal-dielectric electrodes are explored as potential substitutes for fragile ITO electrodes, thanks to their excellent combination of mechanical flexibility and electrical conductivity. This abstract delves into the opportunities and challenges in the development of flexible and transparent organic optoelectronic devices and flexible conducting transparent electrodes. In this review, we explain the technological advancements of transparent and stretchable electrodes, as well as their applications in organic optoelectronic devices such as organic and perovskite solar cells, OLED, heaters, and supercapacitors. We will specifically examine the basic characteristics, optoelectronic properties, and manufacturing procedures of transparent conducting electrodes. We also discuss the key criteria for evaluating proposals for new research lines in this burgeoning sector.

2.
Photochem Photobiol Sci ; 18(12): 2977-2988, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31746926

RESUMEN

Analogues of isochromenopyrrolone were synthesized using Montomorillonite K10 as a catalyst and characterized. The electronic structure and geometry of all the synthesized compounds were investigated experimentally by UV-visible absorption and fluorescence spectroscopy. A negligible shift was observed in the absorption spectrum while a large red shift was observed in the fluorescence spectrum upon changing from non-polar to polar solvents. The experimental results were compared with those from density functional theory calculations. The observed photophysical properties were induced from the solvent environment. Except for chlorosubstituition, other functional groups like methyl, dimethyl, diethyl or methoxy, did not influence the electronic properties of the molecules significantly. The experimental results were in good agreement with the theoretical interpretations. Moreover, these isochromenopyrrolones possess excellent sensing ability for Fe(iii) ions via the fluorescence turn-off mechanism with a detection limit of ∼10-6 M and an association constant of ∼103 M-1. It is proposed that these molecules can find their use in environment sensing applications.


Asunto(s)
Compuestos Férricos/química , Pirroles/química , Teoría Funcional de la Densidad , Solventes/química , Espectrometría de Fluorescencia
3.
Bioorg Med Chem ; 24(16): 3396-405, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27316541

RESUMEN

The serine-threonine protein kinase Akt, also known as protein kinase B, is a key component of the phosphoinositide 3-kinase (PI3K)-Akt-mTOR axis. Deregulated activation of this pathway is frequent in human tumors and Akt-dependent signaling appears to be critical in cell survival. PI3K activation generates 3-phosphorylated phosphatidylinositols that bind Akt pleckstrin homology (PH) domain. The blockage of Akt PH domain/phosphoinositides interaction represents a promising approach to interfere with the oncogenic potential of over-activated Akt. In the present study, phosphatidyl inositol mimics based on a ß-glucoside scaffold have been synthesized as Akt inhibitors. The compounds possessed one or two lipophilic moieties of different length at the anomeric position of glucose, and an acidic or basic group at C-6. Docking studies, ELISA Akt inhibition assays, and cellular assays on different cell models highlighted 1-O-octadecanoyl-2-O-ß-d-sulfoquinovopyranosyl-sn-glycerol as the best Akt inhibitor among the synthesized compounds, which could be considered as a lead for further optimization in the design of Akt inhibitors.


Asunto(s)
Glucolípidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Análisis Espectral/métodos , Relación Estructura-Actividad
4.
Bioorg Med Chem ; 17(16): 5968-73, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19631552

RESUMEN

New sulfoquinovosyldiacylglycerols derived from 2-O-beta-d-glucopyranosyl-sn-glycerol, carrying acyl chains of various length on the glycerol moiety, were prepared through a convenient synthetic procedure in which a sulfonate is introduced at the C-6 position of glucose by oxidation of a thioacetate in the presence of the unprotected secondary hydroxyl groups, and tested for their anti-tumor-promoting activity using a short-term in vitro assay for Epstein-Barr virus early antigen (EBV-EA) activation. Our study has allowed to ascertain the role of the 6'-sulfonate group and the need of a free hydroxyl group on the glycerol moiety in inhibiting the EBV activation promoted by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA).


Asunto(s)
Antígenos Virales/efectos de los fármacos , Antineoplásicos/química , Glucolípidos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular , Glucolípidos/síntesis química , Glucolípidos/farmacología , Humanos , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA