Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(31): 40581-40601, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39074361

RESUMEN

Long-lasting, controlled-release, and minimally invasive injectable platforms that provide a stable blood concentration to promote bone regeneration are less well developed. Using hexagonal mesoporous silica (HMS) loaded with dexamethasone (DEX) and poly(lactic-co-glycolic acid) (PLGA), we prepared porous DEX/HMS/PLGA microspheres (PDHP). In contrast to HMS/PLGA microspheres (HP), porous HMS/PLGA microspheres (PHP), DEX/PLGA microspheres (DP), and DEX/HMS/PLGA microspheres (DHP), PDHP showed notable immuno-coordinated osteogenic capabilities and were best at promoting bone mesenchymal stem cell proliferation and osteogenic differentiation. PDHP were combined with methacrylated silk (SilMA) and sodium alginate (SA) to form an injectable photocurable dual-network hydrogel platform that could continuously release the drug for more than 4 months. By adjusting the content of the microspheres in the hydrogel, a zero-order release hydrogel platform was obtained in vitro for 48 days. When the microsphere content was 1%, the hydrogel platform exhibited the best biocompatibility and osteogenic effects. The expression levels of the osteogenic gene alkaline phosphatases, BMP-2 and OPN were 10 to 15 times higher in the 1% group than in the 0% group, respectively. In addition, the 1% microsphere hydrogel strongly stimulated macrophage polarization to the M2 phenotype, establishing an immunological milieu that supports bone regrowth. The aforementioned outcomes were also observed in vivo. The most successful method for correcting cranial bone abnormalities in SD rats was to use a hydrogel called SilMA/SA containing 1% drug-loaded porous microspheres (PDHP/SS). The angiogenic and osteogenic effects of this treatment were also noticeably greater in the PDHP/SS group than in the control and blank groups. In addition, PDHP/SS polarized M2 macrophages and suppressed M1 macrophages in vivo, which reduced the local immune-inflammatory response, promoted angiogenesis, and cooperatively aided in situ bone healing. This work highlights the potential application of an advanced hydrogel platform for long-term, on-demand, controlled release for bone tissue engineering.


Asunto(s)
Regeneración Ósea , Preparaciones de Acción Retardada , Dexametasona , Hidrogeles , Células Madre Mesenquimatosas , Microesferas , Osteogénesis , Dexametasona/química , Dexametasona/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Porosidad , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Inmunomodulación/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas Sprague-Dawley , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
2.
Animals (Basel) ; 14(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998010

RESUMEN

Freshwater acidification (FA) has become a global environmental problem, posing a potential threat to freshwater ecosystems. The gut microbiota plays a crucial role in the host's response and adaptation to new environments. In this study, we investigated the changes in microbial communities in Red-eared slider (Trachemys scripta elegans) under acidic conditions to reveal the ecological impacts of acidification on freshwater turtles. The results showed that there were significant differences in ß-diversity (p = 0.03), while there were no significant differences in the α-diversity of gut microbiota in T. s. elegans between the different levels of acidification (pH of 5.5, 6.5, 7.5). Both the Gut Microbiome Health Index (GMHI) and the Microbial Dysbiosis Index (MDI) exhibited significant differences when comparing environments with a pH of 5.5 to those with a pH of 6.5 (p < 0.01). A comparative analysis between pH levels of 5.5 and 6.5 also revealed substantial differences (p < 0.01). Likewise, a comparative analysis between pH levels of 6.5 and 7.5 also revealed substantial differences (p < 0.01). At the phylum level, Firmicutes, Fusobacteria, and Bacteroidota formed a major part of the gut microbial community, Fusobacteria showed significant differences in different acidity environments (p = 0.03). At the genus level, Cetobacterium, Turicibacter, unclassified Eubacteriaceae, and Anaerorhabdus_furcosa_group showed significant differences in different acidity environments. The pH reduced interactivity in the gut microbiota of T. s. elegans. In addition, LEfSe analysis and functional prediction revealed that the potentially_pathogenic and stress_tolerant functional characteristics also showed significant differences in different acidity environments. The findings underscore the pivotal role of the gut microbiota in T. s. elegans in response to freshwater acidification and provide a foundation for further exploration into the impacts of acidification on freshwater ecosystems.

3.
Biochem Biophys Rep ; 36: 101565, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965064

RESUMEN

Chronic pelvic pain syndrome (CPPS) is a common complication of prostatitis, which was associated with the pathological depolarization of macrophage and the neuroinflammation. However, its underlying reason is far from clear and few effective treatments is applicable. In this study, we tested the effect of obacunone (Oba), a highly oxygenated triterpenoid, on CPPS. The experimental autoimmune prostatitis (EAP) was induced by subcutaneous injection of heterologous prostate homogenate in mice. We found that EAP led to prostatodynia, neuronal activation of spinal dorsal horn, and the pro-inflammatory depolarization of macrophage within prostate, which was significantly alleviated by oral administration of Oba in a dose-dependent manner. Mechanistically, EAP-induced production of IL-6 on prostatic macrophage was suppressed by Oba. Moreover, co-administration of Oba and MIF inhibitor ISO-1 did not lead to additive effect when compared with either alone. In summary, we conclude that Oba prevents the production of macrophage-derived pro-inflammatory factors by inhibiting MIF, which eventually alleviates CPPS after prostatitis.

4.
J Mater Chem B ; 11(31): 7410-7423, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431779

RESUMEN

The anti-washout ability of calcium phosphate cement (CPC) determines its effectiveness in clinical application. In the current research, the common method for improving the anti-washout ability of CPC is to add anti-washout polymer agents. Sodium polyacrylate powder is an excellent anti-washout agent but when bonded with CPC it basically degrades the anti-washout performance of CPC after γ-ray irradiation, and is widely used in the sterilization process of CPC products. Therefore, we propose a method for the preparation of a sodium polyacrylate solution through irradiation polymerization as curing solution for CPC. This method first uses γ-ray irradiation sterilization to improve the anti-washout ability of CPC directly. It not only avoids the adverse effects of γ-rays on anti-washout agents, but also the CPC blended using this sodium polyacrylate solution had good biological properties and injectability. It provides a new method for promoting the anti-washout properties of calcium phosphate cement, which is of great significance for expanding the clinical application of CPC.


Asunto(s)
Cementos para Huesos , Fosfatos de Calcio , Polimerizacion , Fuerza Compresiva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA