Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(49): e202312538, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37843416

RESUMEN

Photodetectors are critical components in intelligent optoelectronic systems, and photomultiplication-capable devices are essential for detecting weak optical signals. Despite significant advances, developing photomultiplication-type organic photodetectors with high gain and low noise current simultaneously remains challenging. In this work, a new conjugated polymer PDN with singlet open-shell ground state is introduced in active layers for electron capture, and the corresponding PDN-based photodetectors exhibited an enhanced photoelectric gain and decreased dark current density at a low forward bias. At 1.5 V, the PDN-based ternary photodetector has the external quantum efficiency (EQE) up to 2552.3 % and the specific detectivity of 1.4×1014  Jones at 710 nm calculated by the measured noise current, with the gain 22 times higher than that of the control group. This study provides an approach for exploiting polymers with singlet open-shell ground state to enhance the gain of organic photodetectors.

2.
J Phys Chem Lett ; 13(14): 3251-3260, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35388692

RESUMEN

Room-temperature phosphorescence (RTP) emitters with ultralong lifetimes are attracting more and more attention for their wide applications. However, it is still a big challenge to achieve persistent organic afterglow because of the undefined relationship between molecular structures and RTP effect. Herein, diphenylamine (DPA) as a commonly used building block is selected as the molecular skeleton. Through incorporation of various alkyl moieties by ortho-substitution in different numbers and positions, RTP lifetimes can increase from 129 to 661 ms with the subtle adjustment of molecular conformations. It is summarized that the deviation angle (θ) of phenyl units in the DPA skeleton from the ideal p-π conjugated plane can act as the key parameter determining RTP lifetime, and the larger the θ values, the longer the RTP lifetimes. Furthermore, this result has been successfully applied as the universal principle to explain the RTP properties of various organic luminogens with DPA blocks and similar structures.

3.
Adv Mater ; 32(52): e2006752, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33175432

RESUMEN

Afterglow imaging that detects photons after cessation of optical excitation avoids tissue autofluorescence and thus possesses higher sensitivity than traditional fluorescence imaging. Purely organic molecules with room-temperature phosphorescence (RTP) have emerged as a new library of benign afterglow agents. However, most RTP luminogens only emit visible light with shallow tissue penetration, constraining their in vivo applications. This study presents an organic RTP nanoprobe (mTPA-N) with emission in the NIR range for in vivo afterglow imaging. Such a probe is composed of RTP molecule (mTPA) as the phosphorescent generator and an NIR-fluorescent dye as the energy acceptor to enable room-temperature phosphorescence resonance energy transfer (RT-PRET), ultimately resulting in redshifted phosphorescent emission at 780 nm. Because of the elimination of background noise and redshifted afterglow luminescence in a biologically transparent window, mTPA-N permits imaging of lymph nodes in living mice with a high signal-to-noise ratio. This study thus opens up a universal approach to develop organic RTP luminogens into NIR afterglow imaging agents via construction of RT-PRET.


Asunto(s)
Transferencia de Energía , Luminiscencia , Imagen Óptica/métodos , Temperatura , Animales , Rayos Infrarrojos , Ratones , Nanopartículas/química
4.
Angew Chem Int Ed Engl ; 59(45): 20161-20166, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32710517

RESUMEN

Herein, norbornyl (NB), a bulky annular nonconjugated spacer, is melded into π systems to construct two groups of ladder-type room-temperature phosphorescence (RTP) luminogens. The effect of the NB on π-π interactions, packing modes and RTP performance is explored systematically. The experimental and computational results demonstrate the versatility of NB in reducing π-π distances and synergistically intensifying the intermolecular interactions, which not only induces intersystem crossing from S1 to Tn but also diminishes the nonradiative decay of triplet excitons. Impressively, 1800-fold phosphorescence lifetime enhancement is achieved in comparison with the reference compounds without NB. The molecular packing and RTP performance can be further modulated by the length of the backbones and terminal end-groups. It is quite peculiar that NB-annulated phthalic acid exhibits reversible photochromism in the solid state, likely due to the formation of persistent radical pairs. Our study paves an ingenious avenue towards enhancing intermolecular interactions and provides significant implications for a better comprehensive understanding of the origin of their RTP and the inherent photophysical mechanism.

5.
Chemistry ; 25(28): 7031-7037, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-30882928

RESUMEN

Organic luminescence with different forms continues to be one of the most active research fields in science and technology. Herein, an ultra-simple organic molecule (TPA-B), which exhibits both mechanoluminescence (ML) and photo-induced room-temperature phosphorescence (RTP) in the crystalline state, provides an opportunity to reveal the internal mechanism of ML and the dynamic process of photo-induced RTP in the same molecule. Through the detailed investigation of photophysical properties together with crystal structures, the key role of molecular packing and intermolecular interactions was highlighted in the luminescence response by mechanical and light stimulus, affording efficient strategies to design potential smart functional materials with multiple luminescence properties.

6.
Angew Chem Int Ed Engl ; 57(51): 16821-16826, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30375137

RESUMEN

Organic tribophosphorescence materials are rarely reported and the introduction of Br atoms may be a practical way to design such materials. Here four bromine-substituted fluorene-based derivatives are presented and BrFlu-CBr, having fluorescence-phosphorescence dual-emission induced not only by UV light but also by mechanical stimulus, manifests the highest phosphorescence efficiency of 4.56 % upon photoirradiation. During the grinding process, three different triboluminescent spectra were identified. Upon introduction of a mechanical stimulus, the triboluminescence emission is cyan, whereas after an extended period it changed to blue. After removing the mechanical stimulus, green-white phosphorescent emission was observed. Careful research on single-crystal structures and theoretical calculations demonstrate that strong Br⋅⋅⋅Br interactions are vital to facilitate spin-orbit coupling and promote intersystem crossing, thus generating the unique properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA