Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1316: 342865, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969412

RESUMEN

BACKGROUND: Nitroaromatic compounds are inherently hazardous and explosive, so convenient and rapid detection strategies are needed for the sake of human health and the environment. There is an urgent demand for chemical sensing materials that offer high sensitivity, operational simplicity, and recognizability to effectively monitor nitroaromatic residues in industrial wastewater. Despite its importance, the mechanisms underlying fluorescence quenching or enhancement in fluorescent sensing materials have not been extensively researched. The design and synthesis of multiresponsive fluorescent sensing materials have been a great challenge until now. RESULTS: In this study, a one-dimensional Cd-based fluorescent porous coordination polymer (Cd-CIP-1) was synthesized using 5-(4-cyanobenzyl)isophthalic acid (5-H2CIP) and 4,4'-bis(1-imidazolyl)biphenyl (4,4'-bimp) and used for the selective detection of nitrobenzene in aqueous solution by fluorescence quenching, with a limit of detection of 1.38 × 10-8 mol L-1. The presence of aniline in the Cd-CIP-1 solution leads to the enhancement of fluorescence property. Density functional theory and time-dependent density functional theory calculations were carried out to elucidate the mechanisms of the fluorescence changes. This study revealed that the specific pore size of Cd-CIP-1 facilitates analyte screening and enhances host-guest electron coupling. Furthermore, π-π interactions and hydrogen bond between Cd-CIP-1 and the analytes result in intermolecular orbital overlap and thereby boosting electron transfer efficiency. The different electron flow directions in NB@Cd-CIP-1 and ANI@Cd-CIP-1 lead to fluorescence quenching and enhancement. SIGNIFICANCE AND NOVELTY: The multiresponsive coordination polymer (Cd-CIP-1) can selectively detect nitrobenzene and recognize aniline in aqueous solutions. The mechanism of fluorescence quenching and enhancement has been thoroughly elucidated through a combination of density functional theory and experimental approaches. This study presents a promising strategy for the practical implementation of a multiresponsive fluorescent chemical sensor.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124656, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38880074

RESUMEN

The improper utilization of nitrobenzene (NB) and ornidazole (ORN) has resulted in irreversible effects on the environment. By combining experimental investigation, density functional theory (DFT) calculations, and machine learning, an effective green strategy for detecting NB and ORN in aqueous solutions can be developed. In this study, a one-dimensional Cd-based coordination polymer (Cd-HCIA-3) was designed and synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid and rigid 2,2'-bipyridine under solvothermal reaction conditions. Cd-HCIA-3 exhibits excellent fluorescence properties and stability in aqueous solutions. DFT calculations were performed to predict the fluorescence sensing performance of Cd-HCIA-3, revealing that photoinduced electron transfer is the key mechanism for inducing fluorescence quenching in the presence of NB and ORN, with weak molecular interactions promoting electron transfer. Fluorescence sensing experiments were conducted to verify the DFT results, showing that Cd-HCIA-3 can selectively detect NB and ORN in aqueous solutions with limits of detection of 7.22 × 10-8 and 1.31 × 10-7 mol/L, respectively. This study's findings provide valuable insights into the design and synthesis of fluorescent coordination polymers for target analytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA