Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Syst Biol Reprod Med ; 69(2): 87-100, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36689562

RESUMEN

There is evidence of the existence of an intraovarian gonadotropin-releasing hormone (GnRH) system. There are also reports about the influence of extrinsic ovarian innervation in gonadal function. Therefore, it is interesting to study the relationship between ovarian sympathetic innervation and GnRH to shed light on possible physiological and pathophysiological implications. This work aimed to investigate whether noradrenergic stimulation of the superior mesenteric ganglion (SMG) can modify the levels of ovarian GnRH and cause functional and morphological changes in the gonad through the ovarian plexus nerve (OPN), during estrus and diestrus II in rats. The SMG-OPN-Ovary system and an ovary without extrinsic innervation were removed from Holtzman rats in estrus and diestrus II stages and placed in specially designed cuvettes containing Krebs-Ringer buffer. In the experimental groups, SMGs and denervated ovaries were stimulated with 10-6 M noradrenaline (NA). GnRH and progesterone levels (in the ovarian incubation medium) and the mRNA expression of 3beta-hydroxysteroid dehydrogenase (Hsd3b3), 20alpha-hydroxysteroid dehydrogenase (Akr1c18), Bax, and Bcl2 were analyzed. Histological studies of the ovaries were performed. In estrus, NA decreased GnRH levels in both experimental schemes. Furthermore, progesterone levels increased while the Akr1c18 expression and Bax/Bcl2 ratio decreased, without causing changes in ovarian morphology. In diestrus, the noradrenergic stimulation of the ganglion increased GnRH levels, decreased progesterone levels, and increased Akr1c18 expression and Bax/Bcl2 ratio. Follicles with histoarchitecture alterations and corpus luteum with signs of cell death were observed. In denervated ovaries, NA increased the levels of GnRH and progesterone. Furthermore, NA decreased the Bax/Bcl2 ratio and histological studies revealed signs compatible with a possible atretogenic effect. In conclusion, noradrenergic stimulation of the SMG-OPN pathway regulates ovarian cyclicity. The SMG modulates the cross-talk between NA and ovarian GnRH, protecting the ovary from atretogenic effects and luteal apoptosis during estrus while inducing luteal regression in the diestrus II.


Asunto(s)
Ovario , Progesterona , Femenino , Ratas , Animales , Ovario/metabolismo , Progesterona/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Hidroxiesteroide Deshidrogenasas/metabolismo
3.
Cells ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497030

RESUMEN

The immunophilin FKBP51 forms heterocomplexes with molecular chaperones, protein-kinases, protein-phosphatases, autophagy-related factors, and transcription factors. Like most scaffold proteins, FKBP51 can use a simple tethering mechanism to favor the efficiency of interactions with partner molecules, but it can also exert more complex allosteric controls over client factors, the immunophilin itself being a putative regulation target. One of the simplest strategies for regulating pathways and subcellular localization of proteins is phosphorylation. In this study, it is shown that scaffold immunophilin FKBP51 is resolved by resolutive electrophoresis in various phosphorylated isoforms. This was evidenced by their reactivity with specific anti-phosphoamino acid antibodies and their fade-out by treatment with alkaline phosphatase. Interestingly, stress situations such as exposure to oxidants or in vivo fasting favors FKBP51 translocation from mitochondria to the nucleus. While fasting involves phosphothreonine residues, oxidative stress involves tyrosine residues. Molecular modeling predicts the existence of potential targets located at the FK1 domain of the immunophilin. Thus, oxidative stress favors FKBP51 dephosphorylation and protein degradation by the proteasome, whereas FK506 binding protects the persistence of the post-translational modification in tyrosine, leading to FKBP51 stability under oxidative conditions. Therefore, FKBP51 is revealed as a phosphoprotein that undergoes differential phosphorylations according to the stimulus.


Asunto(s)
Fosfoproteínas , Proteínas de Unión a Tacrolimus , Humanos , Fosfoproteínas/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Núcleo Celular/metabolismo , Mitocondrias/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Tirosina/metabolismo
5.
Curr Drug Targets ; 22(14): 1596-1617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390129

RESUMEN

Pathophysiologic conditions of neurodegenerative diseases are unquestionably related to protein misfolding. The accumulation of misfolded proteins into relatively ordered structures such as fibrillar intracellular and extracellular amyloids results in tissue lesions that lead to neuronal loss and brain damage. In these pathologies, the occurrence of protein aggregates suggests certain inefficient or insufficient cellular responses of those molecular chaperones that should properly assist the folding of the client proteins. In this regard, most experimental models for neurodegenerative diseases have demonstrated that the overexpression of molecular chaperones provides effective neuroprotection. A subset of these molecular chaperones corresponds to a group of proteins that exhibit peptidylprolyl isomerase enzymatic activity, the immunophilins. Most of the family members of the latter group were first described as being responsible for the immunosuppressive response or they were reported as members of the chaperone complex associated with HSP90 in steroid receptor oligomers. In this article, we review some aspects of the liaison between molecular chaperones and neurodegenerative diseases, in particular heat-shock proteins and immunophilins with demonstrated influence on the proper function of mitochondria. This article is intended to address a field that represents a yet critical unmet clinical need for the development of neuroprotective molecules focused on potentially novel molecular targets.


Asunto(s)
Proteínas de Choque Térmico , Inmunofilinas , Mitocondrias/patología , Chaperonas Moleculares , Enfermedades Neurodegenerativas , Humanos
6.
J Cell Sci ; 134(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33361281

RESUMEN

Cyclophilin A (CyPA, also known as PPIA) is an abundant and ubiquitously expressed protein belonging to the immunophilin family, which has intrinsic peptidyl-prolyl-(cis/trans)-isomerase enzymatic activity. CyPA mediates immunosuppressive action of the cyclic undecapeptide cyclosporine A and is also involved in multiple cellular processes, such as protein folding, intracellular trafficking, signal transduction and transcriptional regulation. CyPA is abundantly expressed in cancer cells, and, owing to its chaperone nature, its expression is induced upon the onset of stress. In this study, we demonstrated that a significant pool of this immunophilin is primarily an intramitochondrial factor that migrates to the nucleus when cells are stimulated with stressors. CyPA shows anti-apoptotic action per se and the capability of forming ternary complexes with cytochrome c and the small acidic co-chaperone p23, the latter interaction being independent of the usual association of p23 with the heat-shock protein of 90 kDa, Hsp90. These CyPA•p23 complexes enhance the anti-apoptotic response of the cell, suggesting that both proteins form a functional unit, the high level of expression of which plays a significant role in cell survival.


Asunto(s)
Apoptosis , Ciclofilina A , Ciclosporina , Células 3T3 , Animales , Proteínas Portadoras , Ciclofilina A/genética , Ciclofilina A/metabolismo , Células HeLa , Humanos , Ratones , Isomerasa de Peptidilprolil , Pliegue de Proteína , Ratas
7.
Biochem Pharmacol ; 182: 114204, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32828804

RESUMEN

The immunosuppressant drug FK506 (or tacrolimus) is a macrolide that binds selectively to immunophilins belonging to the FK506-binding protein (FKBP) subfamily, which are abundantly expressed proteins in neurons of the peripheral and central nervous systems. Interestingly, it has been reported that FK506 increases neurite outgrowth in cell cultures, implying a potential impact in putative treatments of neurodegenerative disorders and injuries of the nervous system. Nonetheless, the mechanism of action of this compound is poorly understood and remains to be elucidated, with the only certainty that its neurotrophic effect is independent of its primary immunosuppressant activity. In this study it is demonstrated that FK506 shows efficient neurotrophic action in vitro and profound effects on the recovery of locomotor activity, behavioural features, and erectile function of mice that underwent surgical spinal cord injury. The recovery of the locomotor activity was studied in knock-out mice for either immunophilin, FKBP51 or FKBP52. The experimental evidence demonstrates that the neurotrophic actions of FK506 are the consequence of its binding to FKBP52, whereas FK506 interaction with the close-related partner immunophilin FKBP51 antagonises the function of FKBP52. Importantly, our study also demonstrates that other immunophilins do not replace FKBP52. It is concluded that the final biological response is the resulting outcome of the drug binding to both immunophilins, FKBP51 and FKBP52, the latter being the one that commands the dominant neurotrophic action in vivo.


Asunto(s)
Regeneración Nerviosa/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Tacrolimus/metabolismo , Tacrolimus/uso terapéutico , Animales , Línea Celular Tumoral , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración Nerviosa/fisiología , Unión Proteica
8.
Biochem Soc Trans ; 47(6): 1815-1831, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31754722

RESUMEN

FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas de Unión a Tacrolimus/fisiología , Acetilación , Humanos , Fosforilación , Unión Proteica , Transporte de Proteínas , Sumoilación , Proteínas de Unión a Tacrolimus/metabolismo , Factores de Transcripción/metabolismo
9.
Methods Mol Biol ; 1966: 1-5, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31041734

RESUMEN

In this chapter, we summarize the birth of the field of nuclear receptors. These receptors exhibit a multitude of roles in cell biology and hence have attracted a great deal of interest in the drug discovery field. It is not certain whether these receptors evolved independently or an ancestral protein acquired various functions upon binding to preexisting small molecules, ligands. Currently, members of this receptor superfamily are categorized in six groups, including "orphan receptors." Research in the area has resulted in several clinically used drugs and continues to reveal further previously unknown roles for these receptors paving the road toward more valuable discoveries in the future.


Asunto(s)
Receptores Nucleares Huérfanos/metabolismo , Receptores de Esteroides/metabolismo , Transducción de Señal , Animales , Humanos , Ligandos , Receptores Nucleares Huérfanos/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores de Esteroides/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-30148160

RESUMEN

In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.

11.
Biochem Soc Trans ; 46(1): 51-65, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29273620

RESUMEN

The ability to permit gene expression is managed by a set of relatively well known regulatory mechanisms. Nonetheless, this property can also be acquired during a life span as a consequence of environmental stimuli. Interestingly, some acquired information can be passed to the next generation of individuals without modifying gene information, but instead by the manner in which cells read and process such information. Molecular chaperones are classically related to the proper preservation of protein folding and anti-aggregation properties, but one of them, heat-shock protein 90 (Hsp90), is a refined sensor of protein function facilitating the biological activity of properly folded client proteins that already have a preserved tertiary structure. Interestingly, Hsp90 can also function as a critical switch able to regulate biological responses due to its association with key client proteins such as histone deacetylases or DNA methylases. Thus, a growing amount of evidence has connected the action of Hsp90 to post-translational modifications of soluble nuclear factors, DNA, and histones, which epigenetically affect gene expression upon the onset of an unfriendly environment. This response is commanded by the activation of the transcription factor heat-shock factor 1 (HSF1). Even though numerous stresses of diverse nature are known to trigger the stress response by activation of HSF1, it is still unknown whether there are different types of molecular sensors for each type of stimulus. In the present review, we will discuss various aspects of the regulatory action of HSF1 and Hsp90 on transcriptional regulation, and how this regulation may affect genetic assimilation mechanisms and the health of individuals.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas HSP90 de Choque Térmico/fisiología , Factores de Transcripción del Choque Térmico/fisiología , Animales , Variación Genética , Histona Desacetilasa 6/fisiología , Humanos , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA