RESUMEN
Atlantic tarpon (Megalops atlanticus) are capable of long-distance migrations (hundreds of kilometers) but also exhibit resident behaviors in estuarine and coastal habitats. The aim of this study was to characterize the spatial distribution of juvenile tarpon and identify migration pathways of adult tarpon in the northern Gulf of Mexico. Spatial distribution of juvenile tarpon was investigated using gillnet data collected by Texas Parks and Wildlife Department (TPWD) over the past four decades. Generalized additive models (GAMs) indicated that salinity and water temperature played a significant role in tarpon presence, with tarpon occurrences peaking in the fall and increasing over the past four decades in this region. Adult tarpon caught off Texas (n = 40) and Louisiana (n = 4) were tagged with acoustic transmitters to characterize spatial and temporal trends in their movements and migrations. Of the 44 acoustic transmitters deployed, 18 of the individuals were detected (n = 16 west of the Mississippi River Delta and n = 2 east of the Mississippi River Delta). Tarpon tagged west of the Mississippi River Delta off Texas migrated south in the fall and winter into areas of south Texas and potentially into Mexico, while individuals tagged east of the delta migrated into Florida during the same time period, suggesting the presence of two unique migratory contingents or subpopulations in this region. An improved understanding of the habitat requirements and migratory patterns of tarpon inhabiting the Gulf of Mexico is critically needed by resource managers to assess the vulnerability of each contingent to fishing pressure, and this information will guide multi-state and multi-national conservation efforts to rebuild and sustain tarpon populations.
Asunto(s)
Ecosistema , Peces , Humanos , Animales , Golfo de México , Animales Salvajes , MovimientoRESUMEN
Habitat shifts that occur during the life cycles of marine fishes influence population connectivity and structure. A generalized additive modeling approach was used to characterize relationships between environmental variables and the relative abundance of red snapper Lutjanus campechanus over unconsolidated substrate on the continental shelf (<150 m) of the U.S. Gulf of Mexico (GoM) at three different life stages: juvenile (age-0, <125 mm FL), sub-adult (age-1-2, 125-300 mm FL), and adult (age-2+, >300 mm FL). Fisheries independent data (2008-2014) were used to develop separate models for both the eastern and western GoM, and final models were used to predict the relative availability of suitable habitat for each life stage across the two regions. Predictor variables included in final models varied by age class and region, with depth, dissolved oxygen, longitude, and distance to artificial structure common to most models. Depth was among the most influential variables in all models, and preferred depth increased with increasing size/age. Regional differences in fish-habitat relationships were also observed, as relative abundance of larger red snapper over unconsolidated substrates was more closely linked to artificial structure in the eastern GoM. The location of predicted high quality habitat for juvenile red snapper was greatest on the inner Texas shelf and a smaller area east of the Mississippi River Delta, suggesting these two areas may represent important nursery grounds for the respective regions. Clear ontogenetic shifts in the spatial distribution of predicted high quality habitat were evident in both the eastern (expansion from west to east with age) and western (shift from inshore to offshore) GoM. Given the unique population dynamics between the eastern and western GoM, improving our understanding of spatial and temporal variability in habitat quality may be important to maintaining connectivity between juvenile and adult habitats, and may enhance recovery and management of red snapper stocks in the GoM.
Asunto(s)
Perciformes/fisiología , Animales , Ecosistema , Golfo de México , Dinámica PoblacionalRESUMEN
The timing and extent of international crossings by billfishes, tunas, and sharks in the Cuba-Mexico-United States (U.S.) triangle was investigated using electronic tagging data from eight species that resulted in >22,000 tracking days. Transnational movements of these highly mobile marine predators were pronounced with varying levels of bi- or tri-national population connectivity displayed by each species. Billfishes and tunas moved throughout the Gulf of Mexico and all species investigated (blue marlin, white marlin, Atlantic bluefin tuna, yellowfin tuna) frequently crossed international boundaries and entered the territorial waters of Cuba and/or Mexico. Certain sharks (tiger shark, scalloped hammerhead) displayed prolonged periods of residency in U.S. waters with more limited displacements, while whale sharks and to a lesser degree shortfin mako moved through multiple jurisdictions. The spatial extent of associated movements was generally associated with their differential use of coastal and open ocean pelagic ecosystems. Species with the majority of daily positions in oceanic waters off the continental shelf showed the greatest tendency for transnational movements and typically traveled farther from initial tagging locations. Several species converged on a common seasonal movement pattern between territorial waters of the U.S. (summer) and Mexico (winter).
Asunto(s)
Migración Animal/fisiología , Ecosistema , Perciformes/fisiología , Dinámica Poblacional , Tiburones/fisiología , Atún/fisiología , Animales , Cuba , México , Océanos y Mares , Estados UnidosRESUMEN
The feeding ecology of two reef fishes associated with artificial reefs in the northwest Gulf of Mexico (GoM) was examined using gut contents and natural stable isotopes. Reefs were divided into three regions (east, central, west) across an east to west gradient of increasing reef complexity and salinity. Gray triggerfish (Balistes capriscus) primarily consumed reef-associated prey (xanthid crabs, bivalves, barnacles) and pelagic gastropods, while red snapper (Lutjanus campechanus) diets were mainly comprised of non-reef prey (stomatopods, fishes, portunid crabs). Natural stable isotopes of carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) were measured in consumer muscle tissue as well as potential primary producers. Gray triggerfish occupied a lower trophic position than red snapper, with lower δ13C and δ15N values across all size classes and regions, and generally higher δ34S values. Red snapper had a smaller range of stable isotope values and corrected standard ellipse areas across all size classes and regions, indicating a smaller isotopic niche. Contribution estimates of particulate organic matter (26 to 54%) and benthic microalgae (BMA, 47 to 74%) for both species were similar, with BMA contributions greater across all three size classes (juveniles, sub-adults, adults) of red snapper and all but the juvenile size class for gray triggerfish. Species gut contents and stable isotopes differed by region, with fishes consuming more crabs in the east region and more gastropods in the central and west regions. δ13C and δ15N values generally decreased from east to west, while δ34S increased across this gradient. Results highlight species-specific feeding differences associated with artificial reefs, where gray triggerfish may be more dependent on the reef structure for foraging opportunities. In addition, results offer further information on the integral role of BMA in primary production at nearshore artificial reefs.
Asunto(s)
Alimentación Animal/análisis , Isótopos de Carbono/análisis , Peces/fisiología , Isótopos de Nitrógeno/análisis , Isótopos de Azufre/análisis , Animales , Ecosistema , Peces/clasificación , Cadena Alimentaria , Golfo de México , Marcaje Isotópico , Conducta Predatoria , Especificidad de la EspecieRESUMEN
Time-series data collected over a four-year period were used to characterize patterns of abundance for pelagic fishes in the northern Gulf of Mexico (GoM) before (2007-2009) and after (2010) the Deepwater Horizon oil spill. Four numerically dominant pelagic species (blackfin tuna, blue marlin, dolphinfish, and sailfish) were included in our assessment, and larval density of each species was lower in 2010 than any of the three years prior to the oil spill, although larval abundance in 2010 was often statistically similar to other years surveyed. To assess potential overlap between suitable habitat of pelagic fish larvae and surface oil, generalized additive models (GAMs) were developed to evaluate the influence of ocean conditions on the abundance of larvae from 2007-2009. Explanatory variables from GAMs were then linked to environmental data from 2010 to predict the probability of occurrence for each species. The spatial extent of surface oil overlapped with early life habitat of each species, possibly indicating that the availability of high quality habitat was affected by the DH oil spill. Shifts in the distribution of spawning adults is another factor known to influence the abundance of larvae, and the spatial occurrence of a model pelagic predator (blue marlin) was characterized over the same four-year period using electronic tags. The spatial extent of oil coincided with areas used by adult blue marlin from 2007-2009, and the occurrence of blue marlin in areas impacted by the DH oil spill was lower in 2010 relative to pre-spill years.