Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hum Vaccin ; 7 Suppl: 41-50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21266846

RESUMEN

In 2009, a novel H1N1 swine influenza virus was isolated from infected humans in Mexico and the United States, and rapidly spread around the world. Another virus, a highly pathogenic avian influenza virus of the H5N1 subtype, identified by the World Health Organization as a potential pandemic threat in 1997, continues to be a significant risk. While vaccination is the preferred strategy for the prevention and control of influenza infections, the traditional egg-based approach to producing influenza vaccines does not provide sufficient capacity and adequate speed to satisfy global needs to combat newly emerging strains, seasonal or potentially pandemic. Significant efforts are underway to develop and implement new cell substrates with improved efficiency for influenza vaccine development and manufacturing. In recent years, plants have been used to produce recombinant proteins including subunit vaccines and antibodies. The main advantages of using plant systems for the production of vaccine antigens against influenza are their independence from pathogenic viruses, and cost and time efficiency. Here, we describe the large-scale production of recombinant hemagglutinin proteins from A/California/04/09 (H1N1) and A/Indonesia/05/05 (H5N1) strains of influenza virus in Nicotiana benthamiana plants, and their immunogenicity (serum hemagglutination inhibition and virus neutralizing antibodies), and safety in animal models. These results support the testing of these candidate vaccines in human volunteers and also the utility of our plant expression system for large-scale recombinant influenza vaccine production.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Plantas Modificadas Genéticamente/metabolismo , Animales , Anticuerpos Antivirales/sangre , Biotecnología/métodos , Hurones , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente/genética , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Tecnología Farmacéutica/métodos , Nicotiana/genética , Vacunas de Subunidad/efectos adversos , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
2.
J Exp Med ; 203(8): 1999-2008, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16864658

RESUMEN

Human plasmacytoid dendritic cells (PDCs) can produce interferon (IFN)-alpha and/or mature and participate in the adaptive immune response. Three classes of CpG oligonucleotide ligands for Toll-like receptor (TLR)9 can be distinguished by different sequence motifs and different abilities to stimulate IFN-alpha production and maturation of PDCs. We show that the nature of the PDC response is determined by the higher order structure and endosomal location of the CpG oligonucleotide. Activation of TLR9 by the multimeric CpG-A occurs in transferrin receptor (TfR)-positive endosomes and leads exclusively to IFN-alpha production, whereas monomeric CpG-B oligonucleotides localize to lysosome-associated membrane protein (LAMP)-1-positive endosomes and promote maturation of PDCs. However, CpG-B, when complexed into microparticles, localizes in TfR-positive endosomes and induces IFN-alpha from PDCs, whereas monomeric forms of CpG-A localize to LAMP-1-positive endosomes accompanied by the loss of IFN-alpha production and a gain in PDC maturation activity. CpG-C sequences, which induce both IFN-alpha and maturation of PDCs, are distributed in both type of endosomes. Encapsulation of CpG-C in liposomes stable above pH 5.75 completely abrogated the IFN-alpha response while increasing PDC maturation. This establishes that the primary determinant of TLR9 signaling is not valency but endosomal location and demonstrates a strict compartmentalization of the biological response to TLR9 activation in PDCs.


Asunto(s)
Células Dendríticas/inmunología , Receptor Toll-Like 9/inmunología , Transporte Biológico , Células Dendríticas/citología , Humanos , Concentración de Iones de Hidrógeno , Interferón-alfa/biosíntesis , Ligandos , Liposomas/metabolismo , Activación de Linfocitos/inmunología , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Receptor Toll-Like 9/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA